Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2005_5_1_a2, author = {Yu. V. Kupriyanova and S. F. Lukomskiy}, title = {{\CYRO}n optimal choice of interpolation spline on triangular net}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {26--33}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a2/} }
TY - JOUR AU - Yu. V. Kupriyanova AU - S. F. Lukomskiy TI - Оn optimal choice of interpolation spline on triangular net JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2005 SP - 26 EP - 33 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a2/ LA - ru ID - ISU_2005_5_1_a2 ER -
%0 Journal Article %A Yu. V. Kupriyanova %A S. F. Lukomskiy %T Оn optimal choice of interpolation spline on triangular net %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2005 %P 26-33 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a2/ %G ru %F ISU_2005_5_1_a2
Yu. V. Kupriyanova; S. F. Lukomskiy. Оn optimal choice of interpolation spline on triangular net. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 26-33. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a2/
[1] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, M., 1980
[2] Zenisek A., “Polynomial approximation on tetrahedrons in the fshite element method”, J. Approx. Theory, 1973, no. 7, 334–351 | DOI | MR | Zbl
[3] Zenisek A., Zlamanova J., “The finite element method with semiregular Hermite cuic tetrahedral elements”, Algorithm 2000, Proc. of the 15th Conf. of Sci. Computing (Vysoke Tatry–Podbanske, Slovakia, 2000), 420–429
[4] Baidakova N. V., “On some interpolation process by polynomials of degree at most $4m+ 1$ on the triangle”, Rus. J. on num. anal. and math. modeling, 14:2 (1999), 87–107 | MR | Zbl