About closed queuing networks with variable number of queues
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 138-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Coпsider а closed queueing network with the possibllity of breakdowns at each server. When а breakdown occurs at one server, all customers there are transferred in queue with operational server immediately, and the server is then sent for repair. Steady-state probability of the queue sizes is obtained, and is shown to have а product form solution.
@article{ISU_2005_5_1_a13,
     author = {I. E. Tananko},
     title = {About closed queuing networks with variable number of queues},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {138--141},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a13/}
}
TY  - JOUR
AU  - I. E. Tananko
TI  - About closed queuing networks with variable number of queues
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 138
EP  - 141
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a13/
LA  - ru
ID  - ISU_2005_5_1_a13
ER  - 
%0 Journal Article
%A I. E. Tananko
%T About closed queuing networks with variable number of queues
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 138-141
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a13/
%G ru
%F ISU_2005_5_1_a13
I. E. Tananko. About closed queuing networks with variable number of queues. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 138-141. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a13/

[1] Economides A. A., Silvester J. A., “Optimal routing in a network with unreliable links”, IEEE INFOCOM'88 (1988, Aug.), 288–297

[2] Chao X., “A queueing network model with catastrophes and product form solution”, Oper. Res. Let., 18 (1995), 75–79 | DOI | MR | Zbl

[3] Chakka R., Mitrani I., “Approximate solutions for open networks with breakdowns and repairs”, Stochastic Networks — Theory and applications, Chapt. 16, eds. F. P. Kelli, S. Zachary, I. Ziedins, Oxford, 1996, 267–280 | Zbl

[4] Vinod V., Altiok T., “Approximating unreliale queueing networks under the assumption of exponentiality”, J. Oper. Res. Soc., 37:3 (1986), 309–316 | DOI | Zbl

[5] Mitrofanov Yu. I., Osnovy teorii setei massovogo obsluzhivaniya, Saratov, 1993