Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2005_5_1_a13, author = {I. E. Tananko}, title = {About closed queuing networks with variable number of queues}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {138--141}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a13/} }
TY - JOUR AU - I. E. Tananko TI - About closed queuing networks with variable number of queues JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2005 SP - 138 EP - 141 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a13/ LA - ru ID - ISU_2005_5_1_a13 ER -
I. E. Tananko. About closed queuing networks with variable number of queues. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 138-141. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a13/
[1] Economides A. A., Silvester J. A., “Optimal routing in a network with unreliable links”, IEEE INFOCOM'88 (1988, Aug.), 288–297
[2] Chao X., “A queueing network model with catastrophes and product form solution”, Oper. Res. Let., 18 (1995), 75–79 | DOI | MR | Zbl
[3] Chakka R., Mitrani I., “Approximate solutions for open networks with breakdowns and repairs”, Stochastic Networks — Theory and applications, Chapt. 16, eds. F. P. Kelli, S. Zachary, I. Ziedins, Oxford, 1996, 267–280 | Zbl
[4] Vinod V., Altiok T., “Approximating unreliale queueing networks under the assumption of exponentiality”, J. Oper. Res. Soc., 37:3 (1986), 309–316 | DOI | Zbl
[5] Mitrofanov Yu. I., Osnovy teorii setei massovogo obsluzhivaniya, Saratov, 1993