Siegеl disks and basins of attraction for families of analytic functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 12-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{U}\ni 0$ be a hyperbolic domain, $\alpha\in \mathbb{R}\setminus\mathbb{Q}$, let $\Delta$ be a Stolz angle at $\lambda_0=e^{2\pi \alpha}$ with respect to the unit disk $\mathcal{D}$, and $\mathcal{W}$ a domain containing the point $\lambda_0$. Consider an analytic family $f: \mathcal{W}\times \mathcal{U}\to\mathbb{C}$; $(\lambda,z)\mapsto f_\lambda(z)$ consisting of analytic functions in the domain $\mathcal{U}$ with the following expansion $f_\lambda(z)=\lambda z+a_2(\lambda)z^2+\dots$, $\lambda\in \mathcal{W}$, for small $z$. Let $\mathcal{A}^*(0,f_\lambda,\mathcal{U})$ be the maximal domain $\mathcal{A}\subset\mathcal{U}$, such that $0\in \mathcal{A}$ and $f_\lambda(\mathcal{A})\subset \mathcal{A}$, or the set $\{0\}$ if there exist no such domains. We prove, that if a sequence $\{\lambda_n\in \mathcal{W}\cap\Delta\}_{n\in \mathbb{N}}$ converges to $\lambda_0$ and $\mathcal{S}=\mathcal{A}^*(0,f_{\lambda_n},\mathcal{U})\ne\{0\}$, then the sequence of the domains $\mathcal{A}^*(0,f_{\lambda_n},\mathcal{U})$ converges to $\mathcal{S}$ as to the kernel. An example shows, that the analogous statement for convergence with respect to the Hausdorff metric does not hold. In the case $\mathcal{S}\subset \mathcal{U}$ we obtain an asymptotic estimate for the size of the neighbourhood $\mathcal{V}=\mathcal{V}(K)$ of the point $\lambda_0$, such that a given compact $K\subset \mathcal{S}$ lies in $\mathcal{A}^*(0, f_\lambda, \mathcal{U})$ for all $\lambda\in \mathcal{V}\cap\Delta$.
@article{ISU_2005_5_1_a1,
     author = {P. A. Gumenuk},
     title = {Sieg{\cyre}l disks and basins of attraction for families of analytic functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {12--25},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a1/}
}
TY  - JOUR
AU  - P. A. Gumenuk
TI  - Siegеl disks and basins of attraction for families of analytic functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 12
EP  - 25
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a1/
LA  - ru
ID  - ISU_2005_5_1_a1
ER  - 
%0 Journal Article
%A P. A. Gumenuk
%T Siegеl disks and basins of attraction for families of analytic functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 12-25
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a1/
%G ru
%F ISU_2005_5_1_a1
P. A. Gumenuk. Siegеl disks and basins of attraction for families of analytic functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 12-25. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a1/

[1] Milnor J., Dynamics in One Complex Variable, Vieweg, 2000 | MR | Zbl

[2] Bargmann D., “Conjugations on rotation domains as limit functions of the geometric means of the iterates”, Annales Academi Scientiarum Fennic. Mathematica, 23 (1998), 507–524 | MR | Zbl

[3] Beardon A. F., Iteration of Rational Functions, N.Y., 1991 | MR

[4] Carleson L., Gamelin T. W., Complex Dynamics, N.Y., 1993 | MR

[5] Eremenko A. E., Lyubich M. Yu., “Dinamika analiticheskikh otobrazhenii”, Algebra i analiz, 1:3 (1989), 1–70

[6] Bergweiler W., “An introduction to complex dynamics”, Textos de Matematica Universidade de Coimbra. Ser. B, 1995, no. 6, 1–37 | MR

[7] Bergweiler W., “Iteration of meromorphic functions”, Bull. Amer. Math. Soc., 29:2 (1993), 151–188 | DOI | MR | Zbl

[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, M., 1966

[9] Kriete H., Approximation of indifferent cycles, Math. Gottingensis: preprint series, 3, Gottingen, 1996

[10] Bukhshtab A. A., Teoriya chisel, M., 1966

[11] Douady A., Does the Julia set depend continuously on the polynomial?, Proc. Symp. in Appl. Math., 49 (1994), 91–138 | DOI | MR | Zbl

[12] Kriete N., “Continuity of filled-in Julia sets and the closing lemma”, Nonlinearity, 9 (1996), 1599–1608 | DOI | MR | Zbl

[13] Sobol I. M., Mnogomernye kvadraturnye formuly i funktsii Khaara, M., 1969

[14] Nevanlinna R., Uniformizatsiya, M., 1955

[15] Duren P. L., Univalent functions, N.Y., 1983 | MR

[16] Pommerenke Ch., Boundary Behaviour of Conformal maps, N.Y., 1992 | MR

[17] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 1, M., 1967

[18] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. Mosk. mat. o-va, 25 (1971), 119–262 | MR | Zbl