Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2005_5_1_a0, author = {A. S. Galaev}, title = {Isometry groups of {Lobachevskian} spaces, similarity transformation groups of {Euclidean} spaces and {Lorentzian} holonomy groups}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {3--11}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/} }
TY - JOUR AU - A. S. Galaev TI - Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2005 SP - 3 EP - 11 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/ LA - ru ID - ISU_2005_5_1_a0 ER -
%0 Journal Article %A A. S. Galaev %T Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2005 %P 3-11 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/ %G ru %F ISU_2005_5_1_a0
A. S. Galaev. Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/
[1] Borel A., Lichnerowicz A., “Groupes d'holonomie des varietes riemanniennes”, C. R. Acad. Sci. Paris, 234 (1952), 279–300
[2] Berger M., “Sur les groupers d'holonomie des varietes aconnexion affine et des varietes riemanniennes”, Bull. Soc. Math. France, 83 (1955), 279–330 | MR | Zbl
[3] Besse A. L., Einstein manifolds, Berlin–Heidelberg–N.Y., 1987 | MR
[4] Joyce D., Compact manifolds with special holonomy, Oxford, 2000 | MR
[5] Alekseevskii D. V., “Rimanovy prostranstva s neobychnymi gruppami golonomii”, Funktsionalnyi analiz i ego prilozheniya, 2:2 (1968), 1–10 | MR
[6] Ambrose W., Singer I. M., “A theorem on holonomy”, Trans. Amer. Math. Soc., 79 (1953), 428–443 | DOI | MR
[7] Wu H., “Holonomy groups of indefinite metrics”, Pacific J. Math., 20 (1967), 351–382 | DOI | MR
[8] Di Scala A. J., Olmos C., “The geometry of homogeneous submanifolds of hyperbolic space”, Math. J., 237 (2001), 199–209 | DOI | MR | Zbl
[9] Boubel C., Zeghib A., Dynamics of some Lie subgroups of $O(n,1)$ applications, Prepublication de l'ENS Lyon, No 315, 2003
[10] Berard Bergery L., Ikemakhen A., “On the holonomy of Lorentzian manifolds”, Proc. of Symp. in Pure Math., 54 (1993), 27–40 | DOI | MR | Zbl
[11] Alekseevskii D. V., “Odnorodnye rimanovy mnogoobraziya otritsatelnoi krivizny”, Mat. sb., 1975, no. 1, 93–117 | MR | Zbl
[12] Alekseevskii D. V., Vinberg E. B., Solodovnikov A. S., “Geometriya prostranstv postoyannoi krivizny”, Itogi nauki i tekhniki. Ser. Sovr. probl. mat. fund. napravleniya, 29, VINITI, 1988, 5–146
[13] Boubel C., On the holonomy of Lorentzian metrics, Prepublication de l'ENS Lyon, No 323, 2004
[14] Ikemakhen A., “Examples of indecomposable non-irreducible Lorentzian manifolds”, Ann. Sci. Math. Quebec, 20:1 (1996), 53–66 | MR | Zbl
[15] Leistner T., Berger algebras, weak-Berger algebras and Lorentzian holonomy, Sfb 288-preprint No 567, Berlin, 2002
[16] Leistner T., Towards a classification of Lorentzian holonomy groups, 2003, arXiv: math.DG/0305139 | MR
[17] Leistner T., Towards a classification of Lorentzian holonomy groups. Part II: semisimple, non-simple weak-Berger algebras, 2003, arXiv: math.DG/0309274 | MR
[18] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, M., 1995