Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper transitively and simply transitively acting isometry groups of Lobachevskian spaces and transitively acting similarity transformation groups of Euclidean spaces are classified. A geometrical proof of the result of L. Berard Bergery and A. Ikemakhen about the classification of weakly-irreducible not irreducible subalgebras of $so(1,n+1)$ is given.
@article{ISU_2005_5_1_a0,
     author = {A. S. Galaev},
     title = {Isometry groups of {Lobachevskian} spaces, similarity transformation groups of {Euclidean} spaces and {Lorentzian} holonomy groups},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/}
}
TY  - JOUR
AU  - A. S. Galaev
TI  - Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 3
EP  - 11
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/
LA  - ru
ID  - ISU_2005_5_1_a0
ER  - 
%0 Journal Article
%A A. S. Galaev
%T Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 3-11
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/
%G ru
%F ISU_2005_5_1_a0
A. S. Galaev. Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/

[1] Borel A., Lichnerowicz A., “Groupes d'holonomie des varietes riemanniennes”, C. R. Acad. Sci. Paris, 234 (1952), 279–300

[2] Berger M., “Sur les groupers d'holonomie des varietes aconnexion affine et des varietes riemanniennes”, Bull. Soc. Math. France, 83 (1955), 279–330 | MR | Zbl

[3] Besse A. L., Einstein manifolds, Berlin–Heidelberg–N.Y., 1987 | MR

[4] Joyce D., Compact manifolds with special holonomy, Oxford, 2000 | MR

[5] Alekseevskii D. V., “Rimanovy prostranstva s neobychnymi gruppami golonomii”, Funktsionalnyi analiz i ego prilozheniya, 2:2 (1968), 1–10 | MR

[6] Ambrose W., Singer I. M., “A theorem on holonomy”, Trans. Amer. Math. Soc., 79 (1953), 428–443 | DOI | MR

[7] Wu H., “Holonomy groups of indefinite metrics”, Pacific J. Math., 20 (1967), 351–382 | DOI | MR

[8] Di Scala A. J., Olmos C., “The geometry of homogeneous submanifolds of hyperbolic space”, Math. J., 237 (2001), 199–209 | DOI | MR | Zbl

[9] Boubel C., Zeghib A., Dynamics of some Lie subgroups of $O(n,1)$ applications, Prepublication de l'ENS Lyon, No 315, 2003

[10] Berard Bergery L., Ikemakhen A., “On the holonomy of Lorentzian manifolds”, Proc. of Symp. in Pure Math., 54 (1993), 27–40 | DOI | MR | Zbl

[11] Alekseevskii D. V., “Odnorodnye rimanovy mnogoobraziya otritsatelnoi krivizny”, Mat. sb., 1975, no. 1, 93–117 | MR | Zbl

[12] Alekseevskii D. V., Vinberg E. B., Solodovnikov A. S., “Geometriya prostranstv postoyannoi krivizny”, Itogi nauki i tekhniki. Ser. Sovr. probl. mat. fund. napravleniya, 29, VINITI, 1988, 5–146

[13] Boubel C., On the holonomy of Lorentzian metrics, Prepublication de l'ENS Lyon, No 323, 2004

[14] Ikemakhen A., “Examples of indecomposable non-irreducible Lorentzian manifolds”, Ann. Sci. Math. Quebec, 20:1 (1996), 53–66 | MR | Zbl

[15] Leistner T., Berger algebras, weak-Berger algebras and Lorentzian holonomy, Sfb 288-preprint No 567, Berlin, 2002

[16] Leistner T., Towards a classification of Lorentzian holonomy groups, 2003, arXiv: math.DG/0305139 | MR

[17] Leistner T., Towards a classification of Lorentzian holonomy groups. Part II: semisimple, non-simple weak-Berger algebras, 2003, arXiv: math.DG/0309274 | MR

[18] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, M., 1995