Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper transitively and simply transitively acting isometry groups of Lobachevskian spaces and transitively acting similarity transformation groups of Euclidean spaces are classified. A geometrical proof of the result of L. Berard Bergery and A. Ikemakhen about the classification of weakly-irreducible not irreducible subalgebras of $so(1,n+1)$ is given.
@article{ISU_2005_5_1_a0,
     author = {A. S. Galaev},
     title = {Isometry groups of {Lobachevskian} spaces, similarity transformation groups of {Euclidean} spaces and {Lorentzian} holonomy groups},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/}
}
TY  - JOUR
AU  - A. S. Galaev
TI  - Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 3
EP  - 11
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/
LA  - ru
ID  - ISU_2005_5_1_a0
ER  - 
%0 Journal Article
%A A. S. Galaev
%T Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 3-11
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/
%G ru
%F ISU_2005_5_1_a0
A. S. Galaev. Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a0/