Classical scattering matrix for hard and soft excitations in a plasma with non-abelian interaction
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 3, Tome 240 (2025), pp. 29-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the Zakharov–Shulman approach, we determine the classical scattering matrix for the simplest process of interaction between hard and soft excitations in a quark-gluon plasma. Calculations are performed in close analogy with the methods of quantum field theory, with the replacement of the quantum commutator of quantum field operators by the so-called Lie–Poisson bracket of classical variables. The classical $\mathcal{S}$-matrix is determined in the form of the most general integro-power series in asymptotic values of the normal bosonic variables $c^{a}_{\boldsymbol{k}}(t)$ and $c^{\ast a}_{\boldsymbol{k}}(t)$ describing the soft gluon excitations of the system and the color charge $\mathcal{Q}^{a}(t)$ of the hard particle at $t\rightarrow\infty$. The first nontrivial contribution to the given $\mathcal{S}$-matrix is obtained.
Keywords: Hamiltonian formalism, classical scattering matrix, non-Abelian plasma, plasmon, color-charged particle
Mots-clés : Lie–Poisson bracket
@article{INTO_2025_240_a2,
     author = {Yu. A. Markov and M. A. Markova and N. Yu. Markov},
     title = {Classical scattering matrix for hard and soft excitations in a plasma with non-abelian interaction},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {240},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2025_240_a2/}
}
TY  - JOUR
AU  - Yu. A. Markov
AU  - M. A. Markova
AU  - N. Yu. Markov
TI  - Classical scattering matrix for hard and soft excitations in a plasma with non-abelian interaction
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2025
SP  - 29
EP  - 38
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2025_240_a2/
LA  - ru
ID  - INTO_2025_240_a2
ER  - 
%0 Journal Article
%A Yu. A. Markov
%A M. A. Markova
%A N. Yu. Markov
%T Classical scattering matrix for hard and soft excitations in a plasma with non-abelian interaction
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2025
%P 29-38
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2025_240_a2/
%G ru
%F INTO_2025_240_a2
Yu. A. Markov; M. A. Markova; N. Yu. Markov. Classical scattering matrix for hard and soft excitations in a plasma with non-abelian interaction. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 3, Tome 240 (2025), pp. 29-38. http://geodesic.mathdoc.fr/item/INTO_2025_240_a2/

[1] Bogolyubov N. N., Logunov A. A., Todorov I. T., Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, Nauka, M., 1969 | MR

[2] Bogolyubov N. N., Logunov A. A., Oksak A. I., Todorov I. T., Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[3] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[4] Zakharov V. E., “Gamiltonov formalizm dlya gidrodinamicheskikh modelei plazmy”, ZhETF., 60 (1971), 1714–1726

[5] Zakharov V. E., “Gamiltonov formalizm dlya voln v nelineinykh sredakh s dispersiei”, Izv. vuzov. Radiofizika., 17 (1974), 431–453

[6] Zakharov V. E., Kuznetsov E. A., “Gamiltonov formalizm dlya nelineinykh voln”, Usp. fiz. nauk., 167 (1997), 1137–1167 | DOI

[7] Zakharov V. E., Shulman E. I., “O matritse rasseyaniya i integriruemosti volnovykh sistem, obladayuschikh dopolnitelnym integralom dvizheniya”, Dokl. AN SSSR., 283:6 (1985), 1325–1328 | MR

[8] Krasitskii V. P., “O kanonicheskom preobrazovanii v teorii slabonelineinykh voln s neraspadnym zakonom dispersii”, ZhETF., 98 (1990), 1644–341

[9] Markov Yu. A., Markova M. A., Markov N. Yu., Gitman D. M., “Gamiltonov formalizm dlya boze-vozbuzhdenii v plazme s neabelevym tipom vzaimodeistviya”, ZhETF., 157 (2020), 327–341 | DOI

[10] Medvedev B. V., Nachala teoreticheskoi fiziki, Nauka, M., 1977

[11] Shveber S., Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, M., 1963

[12] Markov Yu. A., Markova M. A., Markov N. Yu., “Hamiltonian formalism for Bose excitations in a plasma with a non-Abelian interaction, I: Plasmon – hard particle scattering”, Nucl. Phys. A., 1048 (2024), 122903 | DOI | MR

[13] Markov Yu. A., Markova M. A., Markov N. Yu., “Hamiltonian formalism for Fermi excitations in a plasma with a non-Abelian interaction”, Int. J. Mod. Phys. A., 38 (2023), 2350015 | DOI | MR

[14] Lehmann H., Symanzik K., Zimmermann W., “On the formulation of quantized field theories, II”, Nuovo Cim., 6 (1957), 319–333 | DOI | MR | Zbl

[15] Sudarshan E. C. G., Mukunda N., Classical Dynamics: A Modern Perspective, Wiley, New York, 1974 | MR | Zbl

[16] Zakharov V. E., “Integrable systems in multidimensional spaces”, Lect. Notes Phys., 153 (1983), 190–216 | DOI | MR

[17] Zakharov V. E., Schulman E. I., “On additional motion invariants of classical Hamiltonian wave systems”, Phys. D., 29 (1988), 283–320 | DOI | MR | Zbl

[18] Zakharov V. E., L'vov V. S., Falkovich G., Kolmogorov Spectra of Turbulence, I. Wave Turbulence, Springer–Verlag, 1992 | MR | Zbl