Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 3, Tome 240 (2025), pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the second-order quasilinear parabolic system known in population biology as the predator-prey model and examine exact and approximate solutions with two zero fronts on which at least one of two unknown functions vanish; both these functions are positive between the fronts. We search for exact solutions in the form of polynomials in powers of the spatial variable with the coefficients depending on time. To construct approximate solutions, we propose a numerical algorithm, which is a combination of the collocation method based on the expansion of the right-hand sides by the radial basis functions and the finite-difference approximation of the derivatives in time. The algorithm is verified by model examples; the results obtained are consistent with the exact solutions found.
Keywords: nonlinear parabolic system, predator-prey system, degeneration, approximate solution, collocation method, radial basis functions, computational experiment
Mots-clés : zero front, exact solution
@article{INTO_2025_240_a1,
     author = {A. L. Kazakov and L. F. Spevak},
     title = {Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {240},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2025_240_a1/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - L. F. Spevak
TI  - Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2025
SP  - 19
EP  - 28
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2025_240_a1/
LA  - ru
ID  - INTO_2025_240_a1
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A L. F. Spevak
%T Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2025
%P 19-28
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2025_240_a1/
%G ru
%F INTO_2025_240_a1
A. L. Kazakov; L. F. Spevak. Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 3, Tome 240 (2025), pp. 19-28. http://geodesic.mathdoc.fr/item/INTO_2025_240_a1/

[1] Andreev V. K., Gaponenko Yu. A., Goncharova O. N., Pukhnachev V. V., Covremennye matematicheskie modeli konvektsii, Fizmatlit, M., 2008

[2] Barenblatt G. I., Entov V. N., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nauka, M., 1984

[3] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966

[4] Kazakov A. L., Kuznetsov P. A., “Analiticheskie resheniya s nulevym frontom dlya nelineinoi vyrozhdayuscheisya parabolicheskoi sistemy”, Differ. uravn., 58:11 (2022), 1461–1470 | Zbl

[5] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Zadacha ob initsiirovanii diffuzionnoi volny dlya nelineinoi parabolicheskoi sistemy vtorogo poryadka”, Tr. In-ta mat. mekh. UrO RAN., 29:2 (2023), 67–86 | MR | Zbl

[6] Kazakov A. L., Spevak L. F., “Tochnye i priblizhennye resheniya vyrozhdayuscheisya sistemy reaktsiya-diffuziya”, Prikl. mekh. tekhn. fiz., 62:4 (2021), 169–180 | Zbl

[7] Kazakov A. L., Orlov S. S., “O nekotorykh tochnykh resheniyakh nelineinogo uravneniya teploprovodnosti”, Tr. In-ta mat. mekh. UrO RAN., 22:1 (2016), 112–123 | MR

[8] Kovalev V. A., Kuretova E. D., Kurkina E. S., “O formirovanii nitepodobnykh struktur na rannei faze solnechnykh vspyshek”, Fizika plazmy., 46:4 (2020), 351–357 | DOI

[9] Kolmogorov A. N., Petrovskii I. G., Piskunov N. S., Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme, ONTI, M., 1937

[10] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[11] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987

[12] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001 | MR

[13] Kha D. T., Tsibulin V. G., “Uravneniya diffuzii-reaktsii-advektsii dlya sistemy «khischnik-zhertva» v geterogennoi srede”, Kompyut. issled. model., 13:6 (2021), 1161–1176

[14] Shagapov V. Sh., Mukhametshin S. M., Galiaskarova G. R., “Rasprostranenie tyazhelykh atmosfernykh vybrosov s uchetom landshafta mestnosti”, Inzh.-fiz. zh., 78:2 (2005), 99–103

[15] Achouri T., Ayadi M., Habbal A., Yahyaoui B., “Numerical analysis for the two-dimensional Fisher–Kolmogorov–Petrovski–Piskunov equation with mixed boundary condition”, J. Appl. Math. Comput., 68 (2021), 1–26 | MR

[16] Al-Bayati S. A., Wrobel L. C., “The dual reciprocity boundary element formulation for convection–diffusion–reaction problems with variable velocity field using different radial basis functions”, Int. J. Mech. Sci., 145 (2018), 367–377 | MR

[17] Buhmann M. D., Radial Basis Functions, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[18] Chen C. S., Chen W., Fu Z. J., Recent Advances in Radial Basis Function Collocation Method, Springer, Berlin–Heidelberg, 2013 | MR

[19] Courant R., Hilbert D., Methods of Mathematical Physics. Vol. II: Partial Differential Equations, Interscience, New York, 2008 | MR

[20] Fisher R. A., “The wave of advance of advantageous genes”, Ann. Eugenics., 7 (1937), 353–369

[21] Fornberg B., Flyer N., “Solving PDEs with radial basis functions”, Acta Num., 24 (2015), 215–258 | MR | Zbl

[22] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry., 12:6 (2020), 999 | DOI | MR

[23] Kazakov A. L., Lempert A. A., Spevak L. F., Nefedova O. A., “On the analytical and numerical study of a two-dimensional nonlinear heat equation with a source term”, Symmetry., 12:6 (2020), 921 | DOI | MR

[24] Murray J. D., Mathematical Biology. II: Spatial Models and Biomedical Applications., Springer, New York, 2003 | MR

[25] Nguyen V. P, Rabczuk T., Bordas S., Duflot M., “Meshless methods: A review and computer implementation aspects”, Math. Comput. Simul., 79:3 (2008), 763–813 | DOI | MR | Zbl

[26] Perthame B., Parabolic Equations in Biology. Growth, Reaction, Movement and Diffusion, Springer, New York, 2015 | MR | Zbl