Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2025_240_a1, author = {A. L. Kazakov and L. F. Spevak}, title = {Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {19--28}, publisher = {mathdoc}, volume = {240}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2025_240_a1/} }
TY - JOUR AU - A. L. Kazakov AU - L. F. Spevak TI - Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2025 SP - 19 EP - 28 VL - 240 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2025_240_a1/ LA - ru ID - INTO_2025_240_a1 ER -
%0 Journal Article %A A. L. Kazakov %A L. F. Spevak %T Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2025 %P 19-28 %V 240 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2025_240_a1/ %G ru %F INTO_2025_240_a1
A. L. Kazakov; L. F. Spevak. Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 3, Tome 240 (2025), pp. 19-28. http://geodesic.mathdoc.fr/item/INTO_2025_240_a1/
[1] Andreev V. K., Gaponenko Yu. A., Goncharova O. N., Pukhnachev V. V., Covremennye matematicheskie modeli konvektsii, Fizmatlit, M., 2008
[2] Barenblatt G. I., Entov V. N., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nauka, M., 1984
[3] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966
[4] Kazakov A. L., Kuznetsov P. A., “Analiticheskie resheniya s nulevym frontom dlya nelineinoi vyrozhdayuscheisya parabolicheskoi sistemy”, Differ. uravn., 58:11 (2022), 1461–1470 | Zbl
[5] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Zadacha ob initsiirovanii diffuzionnoi volny dlya nelineinoi parabolicheskoi sistemy vtorogo poryadka”, Tr. In-ta mat. mekh. UrO RAN., 29:2 (2023), 67–86 | MR | Zbl
[6] Kazakov A. L., Spevak L. F., “Tochnye i priblizhennye resheniya vyrozhdayuscheisya sistemy reaktsiya-diffuziya”, Prikl. mekh. tekhn. fiz., 62:4 (2021), 169–180 | Zbl
[7] Kazakov A. L., Orlov S. S., “O nekotorykh tochnykh resheniyakh nelineinogo uravneniya teploprovodnosti”, Tr. In-ta mat. mekh. UrO RAN., 22:1 (2016), 112–123 | MR
[8] Kovalev V. A., Kuretova E. D., Kurkina E. S., “O formirovanii nitepodobnykh struktur na rannei faze solnechnykh vspyshek”, Fizika plazmy., 46:4 (2020), 351–357 | DOI
[9] Kolmogorov A. N., Petrovskii I. G., Piskunov N. S., Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme, ONTI, M., 1937
[10] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[11] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987
[12] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001 | MR
[13] Kha D. T., Tsibulin V. G., “Uravneniya diffuzii-reaktsii-advektsii dlya sistemy «khischnik-zhertva» v geterogennoi srede”, Kompyut. issled. model., 13:6 (2021), 1161–1176
[14] Shagapov V. Sh., Mukhametshin S. M., Galiaskarova G. R., “Rasprostranenie tyazhelykh atmosfernykh vybrosov s uchetom landshafta mestnosti”, Inzh.-fiz. zh., 78:2 (2005), 99–103
[15] Achouri T., Ayadi M., Habbal A., Yahyaoui B., “Numerical analysis for the two-dimensional Fisher–Kolmogorov–Petrovski–Piskunov equation with mixed boundary condition”, J. Appl. Math. Comput., 68 (2021), 1–26 | MR
[16] Al-Bayati S. A., Wrobel L. C., “The dual reciprocity boundary element formulation for convection–diffusion–reaction problems with variable velocity field using different radial basis functions”, Int. J. Mech. Sci., 145 (2018), 367–377 | MR
[17] Buhmann M. D., Radial Basis Functions, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[18] Chen C. S., Chen W., Fu Z. J., Recent Advances in Radial Basis Function Collocation Method, Springer, Berlin–Heidelberg, 2013 | MR
[19] Courant R., Hilbert D., Methods of Mathematical Physics. Vol. II: Partial Differential Equations, Interscience, New York, 2008 | MR
[20] Fisher R. A., “The wave of advance of advantageous genes”, Ann. Eugenics., 7 (1937), 353–369
[21] Fornberg B., Flyer N., “Solving PDEs with radial basis functions”, Acta Num., 24 (2015), 215–258 | MR | Zbl
[22] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry., 12:6 (2020), 999 | DOI | MR
[23] Kazakov A. L., Lempert A. A., Spevak L. F., Nefedova O. A., “On the analytical and numerical study of a two-dimensional nonlinear heat equation with a source term”, Symmetry., 12:6 (2020), 921 | DOI | MR
[24] Murray J. D., Mathematical Biology. II: Spatial Models and Biomedical Applications., Springer, New York, 2003 | MR
[25] Nguyen V. P, Rabczuk T., Bordas S., Duflot M., “Meshless methods: A review and computer implementation aspects”, Math. Comput. Simul., 79:3 (2008), 763–813 | DOI | MR | Zbl
[26] Perthame B., Parabolic Equations in Biology. Growth, Reaction, Movement and Diffusion, Springer, New York, 2015 | MR | Zbl