Initial-boundary-value problems for some nonlinear mixed heat conductivity operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a computational model for a mixed nonlinear heat equation with boundary conditions of the third kind that describes the process of switching off an electric arc including the interval of its stable combustion until the moment of switching off and replacing the strictly hyperbolic heat equation with a hyperbolic-parabolic equation. The numerical simulation of this problem based on an implicit difference scheme and the heat balance method was performed by using the MathCad-15 software. Also, we prove the well-posedness of the first boundary-value problem for some high-order nonlinear equation.
Keywords: hyperbolic heat equation, nonlinear equation of mixed type, implicit difference scheme, third boundary condition, heat balance method, high order equations
@article{INTO_2025_239_a5,
     author = {V. N. Khankhasaev and S. I. Munyaev},
     title = {Initial-boundary-value problems for some nonlinear mixed heat conductivity operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {239},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2025_239_a5/}
}
TY  - JOUR
AU  - V. N. Khankhasaev
AU  - S. I. Munyaev
TI  - Initial-boundary-value problems for some nonlinear mixed heat conductivity operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2025
SP  - 53
EP  - 61
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2025_239_a5/
LA  - ru
ID  - INTO_2025_239_a5
ER  - 
%0 Journal Article
%A V. N. Khankhasaev
%A S. I. Munyaev
%T Initial-boundary-value problems for some nonlinear mixed heat conductivity operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2025
%P 53-61
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2025_239_a5/
%G ru
%F INTO_2025_239_a5
V. N. Khankhasaev; S. I. Munyaev. Initial-boundary-value problems for some nonlinear mixed heat conductivity operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 53-61. http://geodesic.mathdoc.fr/item/INTO_2025_239_a5/

[1] Buyantuev S. L., Khankhasaev V. N., “Ob odnom obobschenii uravnenii Nave"– Stoksa”, Elektrichestvo., 11 (1996), 17–23

[2] Vragov V. N., Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, Izd-vo NGU, Novosibirsk, 1983 | MR

[3] Dubinskii Yu. A., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki tekhn. Sovr. probl. mat. Nov. dostizh., 1976, 1–130

[4] Dulnev G. N., Parfenov V. G., Sigalov A. V., Primenenie EVM dlya resheniya zadach teploobmena, Vysshaya shkola, M., 1990

[5] Khankhasaev V. N., “K teorii nelineinykh uravnenii smeshannogo tipa chetvertogo poryadka”, Primenenie metodov funktsionalnogo analiza k neklassicheskim uravneniyam matematicheskoi fiziki, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 1988, 154–165 | MR

[6] Khankhasaev V. N., “Razreshimost zadachi Dirikhle dlya odnogo nelineinogo uravneniya smeshannogo tipa 4-go poryadka”, Dinamika sploshnoi sredy, v. 54, Izd-vo In-ta gidrodinamiki SO RAN, Novosibirsk, 1982, 172–177 | MR

[7] Shashkov A. G., Volnovye yavleniya teploprovodnosti, Editorial URSS, M., 2004