Methods of boundary-value problems for improving control in systems with constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 43-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class of state-nonlinear optimal control problems with constraints, a new approach to improving controls is proposed. This approach is based on solving special boundary-value problems by perturbation methods and parametrization of the optimal control problem by the perturbation parameter. The solution of the constructed unperturbed boundary-value problem is reduced to the solution of an algebraic equation for one unknown parameter. To solve the perturbed boundary-value problem, an iterative process is proposed, at each iteration of which a problem is solved that is similar in complexity to the unperturbed problem.
Keywords: controlled system with constraints, boundary-value problem of control improvement, iterative algorithms
Mots-clés : perturbation method
@article{INTO_2025_239_a4,
     author = {D. O. Trunin},
     title = {Methods of boundary-value problems for improving control in systems with constraints},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {239},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2025_239_a4/}
}
TY  - JOUR
AU  - D. O. Trunin
TI  - Methods of boundary-value problems for improving control in systems with constraints
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2025
SP  - 43
EP  - 52
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2025_239_a4/
LA  - ru
ID  - INTO_2025_239_a4
ER  - 
%0 Journal Article
%A D. O. Trunin
%T Methods of boundary-value problems for improving control in systems with constraints
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2025
%P 43-52
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2025_239_a4/
%G ru
%F INTO_2025_239_a4
D. O. Trunin. Methods of boundary-value problems for improving control in systems with constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 43-52. http://geodesic.mathdoc.fr/item/INTO_2025_239_a4/

[1] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR

[2] Buldaev A. S., Metody vozmuschenii v zadachakh uluchsheniya i optimizatsii upravlyaemykh sistem, Izd-vo Buryat. gos. un-ta, Ulan-Ude, 2008

[3] Buldaev A. S., “Operatornye uravneniya i algoritmy printsipa maksimuma v zadachakh optimalnogo upravleniya”, Vestn. Buryat. gos. un-ta. Mat. Inform., 1 (2020), 35–53

[4] Vasilev O. V., Lektsii po metodam optimizatsii, Izd-vo Irkut. gos. un-ta, Irkutsk, 1994 | MR

[5] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[6] Trunin D. O., “Proektsionnye metody uluchsheniya upravlenii v nelineinykh upravlyaemykh sistemakh s terminalnymi ogranicheniyami”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 224 (2023), 142–149 | MR