Vortex models of shear laminar and turbulent flows
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 32-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a mathematical model of laminar and turbulent shear flows of liquids and gases in rectangular channels based on a system of differential equations describing the longitudinal motion and rotation of vortex tubes. We show that in the case of a plane steady flow, this system of equations has two-parameter analytical solutions for velocity distributions in the cross-section of the channel, which are in good agreement with known experimental data and the results of numerical simulations. Model approximations of velocity profiles of laminar flows of non-Newtonian liquids and developed turbulent flows of liquids and gases in rectangular channels are discussed as examples.
Keywords: equation of vortex flows, non-Newtonian liquid, Reynolds tensor, eddy viscosity
Mots-clés : turbulence
@article{INTO_2025_239_a3,
     author = {V. L. Mironov and S. V. Mironov},
     title = {Vortex models of shear laminar and turbulent flows},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {32--42},
     publisher = {mathdoc},
     volume = {239},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2025_239_a3/}
}
TY  - JOUR
AU  - V. L. Mironov
AU  - S. V. Mironov
TI  - Vortex models of shear laminar and turbulent flows
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2025
SP  - 32
EP  - 42
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2025_239_a3/
LA  - ru
ID  - INTO_2025_239_a3
ER  - 
%0 Journal Article
%A V. L. Mironov
%A S. V. Mironov
%T Vortex models of shear laminar and turbulent flows
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2025
%P 32-42
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2025_239_a3/
%G ru
%F INTO_2025_239_a3
V. L. Mironov; S. V. Mironov. Vortex models of shear laminar and turbulent flows. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 32-42. http://geodesic.mathdoc.fr/item/INTO_2025_239_a3/

[1] Abe H., “Poi1020-4th-A-ver2.dat”, DNS Data Base for Turbulent Channel Flow with Heat Transfer, ed. Kawamura H., https://www.rs.tus.ac.jp/t2lab/db/poi/text/Poi1020_4th_A_ver2.dat

[2] Ansari S., Rashid M., Waghmare P. R., Nobes D. S., “Measurement of the flow behavior index of Newtonian and shear-thinning fluids via analysis of the flow velocity characteristics in a mini-channel”, SN Appl. Sci., 2 (2020), 1787

[3] Boussinesq J., “Essai sur la th'eorie des eaux courantes”, J. Math. Pures Appl. Ser. 3, 4 (1878), 335–376

[4] Cess R. D., A Survey of the Literature on Heat Transfer in Turbulent Tube Flow, Westinghouse Research Report No. 8-0529-R24, 1958 | MR

[5] DNS Database of Wall Turbulence and Heat Transfer, ed. Kawamura H., https://www.rs.tus.ac.jp/t2lab/db/

[6] El Telbany M. M. M., Reynolds A. J., “Velocity distributions in plane turbulent channel flows”, J. Fluid Mech., 100 (1980), 1–29

[7] Fu T., Carrier O., Funfschilling D., Ma Y., Li H. Z., “Newtonian and Non-Newtonian flows in microchannels: inline rheological characterization”, Chem. Eng. Technol., 39 (2016), 987–992

[8] Hanjalic K., Launder B. E., “A Reynolds stress model of turbulence and its application to thin shear flows”, J. Fluid Mech., 52 (1972), 609–638 | Zbl

[9] Helmholtz H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 | MR

[10] Henry F. S., Reynolds A. J., “Analytical solution of two gradient-diffusion models applied to turbulent Couette flow”, J. Fluids Eng., 106 (1984), 211–216 | MR

[11] Hussain A. K. M. F., Reynolds W. C., “Measurements in fully developed turbulent channel flow”, J. Fluids Eng., 97 (1975), 568–578

[12] McComb W. D., “Theory of turbulence”, Rep. Progr. Phys., 58 (1995), 1117–1206

[13] Mironov V. L., Mironov S. V., “Generalized sedeonic equations of hydrodynamics”, Eur. Phys. J. Plus., 135 (2020), 708

[14] Mironov V. L., “Self-consistent hydrodynamic two-fluid model of vortex plasma”, Phys. Fluids., 33 (2021), 037116 | MR

[15] Mironov V. L., “Self-consistent hydrodynamic model of electron vortex fluid in solids”, Fluids., 7 (2022), 330

[16] Reynolds O., “On the dynamical theory of incompressible viscous fluids and the determination of the criterion”, Phil. Trans. Roy. Soc. London A., 186 (1895), 123–164 | MR

[17] Schmitt F. G., “About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity”, C. R. Méc., 335 (2007), 617–627 | Zbl

[18] Symon S., Madhusudanan A., Illingworth S. J., Marusic I., “Use of eddy viscosity in resolvent analysis of turbulent channel flow”, Phys. Rev. Fluids., 8 (2023), 064601 | MR

[19] Thurlowa E. M., Klewicki J. C., “Experimental study of turbulent Poiseuille–Couette flow”, Phys. Fluids., 12 (2000), 865–875

[20] Tsukahara T., “Poi070-2nd-A.dat”, DNS Data Base for Turbulent Channel Flow with Heat Transfer, ed. Kawamura H., https://www.rs.tus.ac.jp/t2lab/db/poi/text/Poi070_2nd_A.dat

[21] Van Driest E. R., “On turbulent flow near a wall”, J. Aeronaut. Sci., 23 (1956), 1007–1011 | MR | Zbl