Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2025_239_a2, author = {M. J. Mardanov and T. K. Melikov}, title = {Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {25--31}, publisher = {mathdoc}, volume = {239}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2025_239_a2/} }
TY - JOUR AU - M. J. Mardanov AU - T. K. Melikov TI - Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2025 SP - 25 EP - 31 VL - 239 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2025_239_a2/ LA - ru ID - INTO_2025_239_a2 ER -
%0 Journal Article %A M. J. Mardanov %A T. K. Melikov %T Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2025 %P 25-31 %V 239 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2025_239_a2/ %G ru %F INTO_2025_239_a2
M. J. Mardanov; T. K. Melikov. Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 25-31. http://geodesic.mathdoc.fr/item/INTO_2025_239_a2/
[1] Agrachev A. A., Gamkrelidze R. V., “Printsip optimalnosti vtorogo poryadka dlya zadachi bystrodeistviya”, Mat. sb., 100:142 (1976), 610–643 | Zbl
[2] Aschepkov L. T., Eppel D. S., “Analog usloviya Kelli v optimalnykh sistemakh s zapazdyvaniem”, Differ. uravn., 1974, no. 4, 591–597 | MR | Zbl
[3] Gabasov R., “K teorii neobkhodimykh uslovii optimalnosti osobykh upravlenii”, Dokl. AN SSSR., 183:2 (1968), 300–302 | Zbl
[4] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973
[5] Gorokhovik V. V., Gorokhovik S. Ya., “Razlichnye formy obobschennykh uslovii Lezhandra"– Klebsha”, Avtomat. telemekh., 1982, no. 7, 28–33 | Zbl
[6] Mardanov M. Dzh., Melikov T. K., “K teorii osobykh optimalnykh upravlenii v dinamicheskikh sistemakh s zapazdyvaniem v upravlenii”, Zh. vychisl. mat. mat. fiz., 57:5 (2017), 747–767 | DOI | Zbl
[7] Melikov T. K., “Rekurrentnye usloviya optimalnosti osobykh upravlenii v sistemakh s zapazdyvaniem”, Dokl. RAN., 322:5 (1992), 843–846 | Zbl
[8] Melikov T. K., “O neobkhodimykh usloviyakh optimalnosti vysokogo poryadka”, Zh. vychisl. mat. mat. fiz., 35:7 (1995), 1134–1138 | MR | Zbl
[9] Melikov T. K., “Analog usloviya Kelli v optimalnykh sistemakh s posledeistviem neitralnogo tipa”, Zh. vychisl. mat. mat. fiz., 38:9 (1998), 1490–1499 | MR | Zbl
[10] Melikov T. K., “Ob optimalnosti osobykh upravlenii v sistemakh s posledeistviem neitralnogo tipa”, Zh. vychisl. mat. mat. fiz., 41:9 (2001), 1332–1343 | MR | Zbl
[11] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, M., Nauka, 1988 | MR
[12] Srochko V. A., “Issledovanie vtoroi variatsii na osobykh upravleniyakh”, Differ. uravn., 10:6 (1974), 1050–1066
[13] Isayeva A. M., “Necessary conditions in delayed variational problems with free right end”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 42:4 (2022), 81 | MR | Zbl
[14] Kelley H. J., “A second variation test for singular extremals”, AIAA J., 2:8 (1964), 1380–1382 | DOI | MR | Zbl
[15] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in Optimization, ed. G. Leitman, Academic Press, New York, 1967, 63–101 | DOI | MR
[16] Krener A., “The high order maximal principle and its application to singular extremals”, SIAM J. Control Optim., 15:2 (1997), 256–293 | DOI | MR
[17] Malik S. T., “On necessary optimality conditions for singular controls in dynamical system with a delay in control”, Numer. Funct. Anal. Optim., 39:15 (2018), 1669–1689 | DOI | MR | Zbl
[18] Mardanov M. J., “On optimality conditions for singular controls”, Dokl. Akad. Nauk SSSR., 253:4 (1980), 815–818 | MR | Zbl
[19] Mardanov M. J., Melikov T. K., “Analogue of the Kelley condition for optimal systems with retarded control”, Int. J. Control., 90:7 (2017), 1299–1307 | DOI | MR | Zbl
[20] Mardanov M. J., Melikov T. K., Malik S. T., “Necessary conditions for the extremum in non-smooth problems of variational calculus”, J. Comput. Appl. Math., 399:2 (2022), 113723 | DOI | MR | Zbl
[21] Mardanov M. J., Melikov T. K., Malik S. T., “Necessary conditions for a minimum in classical calculus of variations in the presence of various types of degenerations”, J. Comput. Appl. Math., 2023, 114668, 418 | MR | Zbl
[22] Melikov T. K., Hajiyeva G. V., “Necessary conditions for an extremum in nonsmooth variational problems involving retarded argument”, Proc. 7th Int. Conf. on Control and Optimization with Industrial Applications (Baku, Azerbaijan, August 26–28, 2020), 2020, 284–286