Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 25-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article examines the minimum of an extremal in the variational problem with delay under the degeneracy of the Weierstrass condition. We obtain necessary conditions of equality type and inequality type for a strong as well as for a weak local minimum. Necessary conditions of equality and inequality types are obtained for strong as well as weak local minimum. A specific example demonstrating the effectiveness of the results in this paper is provided.
Keywords: variational problem with delayed argument, strong (weak) local minimum, necessary condition type equality (inequality), degeneration at the point
@article{INTO_2025_239_a2,
     author = {M. J. Mardanov and T. K. Melikov},
     title = {Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {239},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2025_239_a2/}
}
TY  - JOUR
AU  - M. J. Mardanov
AU  - T. K. Melikov
TI  - Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2025
SP  - 25
EP  - 31
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2025_239_a2/
LA  - ru
ID  - INTO_2025_239_a2
ER  - 
%0 Journal Article
%A M. J. Mardanov
%A T. K. Melikov
%T Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2025
%P 25-31
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2025_239_a2/
%G ru
%F INTO_2025_239_a2
M. J. Mardanov; T. K. Melikov. Necessary conditions for a minimum in variational problems with delay in the presence of degeneracie. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 25-31. http://geodesic.mathdoc.fr/item/INTO_2025_239_a2/

[1] Agrachev A. A., Gamkrelidze R. V., “Printsip optimalnosti vtorogo poryadka dlya zadachi bystrodeistviya”, Mat. sb., 100:142 (1976), 610–643 | Zbl

[2] Aschepkov L. T., Eppel D. S., “Analog usloviya Kelli v optimalnykh sistemakh s zapazdyvaniem”, Differ. uravn., 1974, no. 4, 591–597 | MR | Zbl

[3] Gabasov R., “K teorii neobkhodimykh uslovii optimalnosti osobykh upravlenii”, Dokl. AN SSSR., 183:2 (1968), 300–302 | Zbl

[4] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973

[5] Gorokhovik V. V., Gorokhovik S. Ya., “Razlichnye formy obobschennykh uslovii Lezhandra"– Klebsha”, Avtomat. telemekh., 1982, no. 7, 28–33 | Zbl

[6] Mardanov M. Dzh., Melikov T. K., “K teorii osobykh optimalnykh upravlenii v dinamicheskikh sistemakh s zapazdyvaniem v upravlenii”, Zh. vychisl. mat. mat. fiz., 57:5 (2017), 747–767 | DOI | Zbl

[7] Melikov T. K., “Rekurrentnye usloviya optimalnosti osobykh upravlenii v sistemakh s zapazdyvaniem”, Dokl. RAN., 322:5 (1992), 843–846 | Zbl

[8] Melikov T. K., “O neobkhodimykh usloviyakh optimalnosti vysokogo poryadka”, Zh. vychisl. mat. mat. fiz., 35:7 (1995), 1134–1138 | MR | Zbl

[9] Melikov T. K., “Analog usloviya Kelli v optimalnykh sistemakh s posledeistviem neitralnogo tipa”, Zh. vychisl. mat. mat. fiz., 38:9 (1998), 1490–1499 | MR | Zbl

[10] Melikov T. K., “Ob optimalnosti osobykh upravlenii v sistemakh s posledeistviem neitralnogo tipa”, Zh. vychisl. mat. mat. fiz., 41:9 (2001), 1332–1343 | MR | Zbl

[11] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, M., Nauka, 1988 | MR

[12] Srochko V. A., “Issledovanie vtoroi variatsii na osobykh upravleniyakh”, Differ. uravn., 10:6 (1974), 1050–1066

[13] Isayeva A. M., “Necessary conditions in delayed variational problems with free right end”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 42:4 (2022), 81 | MR | Zbl

[14] Kelley H. J., “A second variation test for singular extremals”, AIAA J., 2:8 (1964), 1380–1382 | DOI | MR | Zbl

[15] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in Optimization, ed. G. Leitman, Academic Press, New York, 1967, 63–101 | DOI | MR

[16] Krener A., “The high order maximal principle and its application to singular extremals”, SIAM J. Control Optim., 15:2 (1997), 256–293 | DOI | MR

[17] Malik S. T., “On necessary optimality conditions for singular controls in dynamical system with a delay in control”, Numer. Funct. Anal. Optim., 39:15 (2018), 1669–1689 | DOI | MR | Zbl

[18] Mardanov M. J., “On optimality conditions for singular controls”, Dokl. Akad. Nauk SSSR., 253:4 (1980), 815–818 | MR | Zbl

[19] Mardanov M. J., Melikov T. K., “Analogue of the Kelley condition for optimal systems with retarded control”, Int. J. Control., 90:7 (2017), 1299–1307 | DOI | MR | Zbl

[20] Mardanov M. J., Melikov T. K., Malik S. T., “Necessary conditions for the extremum in non-smooth problems of variational calculus”, J. Comput. Appl. Math., 399:2 (2022), 113723 | DOI | MR | Zbl

[21] Mardanov M. J., Melikov T. K., Malik S. T., “Necessary conditions for a minimum in classical calculus of variations in the presence of various types of degenerations”, J. Comput. Appl. Math., 2023, 114668, 418 | MR | Zbl

[22] Melikov T. K., Hajiyeva G. V., “Necessary conditions for an extremum in nonsmooth variational problems involving retarded argument”, Proc. 7th Int. Conf. on Control and Optimization with Industrial Applications (Baku, Azerbaijan, August 26–28, 2020), 2020, 284–286