Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2025_239_a1, author = {O. V. Kuz'min and M. V. Strihar}, title = {The listing and counting combinatorial algorithm for compositions of a natural number with constraints}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {13--24}, publisher = {mathdoc}, volume = {239}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/} }
TY - JOUR AU - O. V. Kuz'min AU - M. V. Strihar TI - The listing and counting combinatorial algorithm for compositions of a natural number with constraints JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2025 SP - 13 EP - 24 VL - 239 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/ LA - ru ID - INTO_2025_239_a1 ER -
%0 Journal Article %A O. V. Kuz'min %A M. V. Strihar %T The listing and counting combinatorial algorithm for compositions of a natural number with constraints %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2025 %P 13-24 %V 239 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/ %G ru %F INTO_2025_239_a1
O. V. Kuz'min; M. V. Strihar. The listing and counting combinatorial algorithm for compositions of a natural number with constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 13-24. http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/
[1] Borodin A. V., Biryukov E. S., “O prakticheskoi realizatsii nekotorykh algoritmov, svyazannykh s problemoi kompozitsii chisel”, Kibern. programm., 2015, no. 1, 27–45
[2] Kruchinin V. V., “Algoritmy generatsii i numeratsii kompozitsii i razbienii naturalnogo chisla $n$”, Dokl. TUSUR., 17:3 (2008), 113–119
[3] Kruchinin V. V., “Modifikatsiya metoda postroeniya algoritmov kombinatornoi generatsii na osnove primeneniya proizvodyaschikh funktsii mnogikh peremennykh i priblizhennykh vychislenii”, Dokl. TUSUR., 25:1 (2022), 55–60 | MR
[4] Kuzmin O. V., Obobschennye piramidy Paskalya i ikh prilozheniya, Nauka, Novosibirsk, 2000 | MR
[5] Kuzmin O. V., Strikhar M. V., “Kompozitsii chisel s ogranicheniyami i ierarkhicheskaya struktura ploskikh sechenii piramidy Paskalya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 234 (2024), 67–74
[6] Kuzmin O. V., Seregina M. V., “Ploskie secheniya obobschennoi piramidy Paskalya i ikh interpretatsii”, Diskr. mat., 22:3 (2010), 83–93 | DOI | MR | Zbl
[7] Strikhar M. V., “Summa elementov secheniya giperpiramidy Paskalya giperploskostyu”, Aktualnye zadachi prikladnoi diskretnoi matematiki, ed. O. V. Kuzmin, Izd-vo IGU, Irkutsk, 2024
[8] Endryus G., Teoriya razbienii, Nauka, M., 1982
[9] Okbaeva N., “Pascal's triangle, its planar and spatial generalizations”, Int. Sci. J. Theor. Appl. Sci., 03 (107) (2022), 815–823
[10] Sloane N. J. A., The on-line encyclopedia of integer sequences, https://oeis.org | MR