The listing and counting combinatorial algorithm for compositions of a natural number with constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 13-24

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a listing and counting algorithm for compositions of a natural number based on combinatorial objects of a hierarchical structure, such as Pascal's triangle, Pascal's pyramid, and Pascal's hyperpyramids. We obtain the recurrent relation that is the basis for listing and counting of compositions of a natural number with an arbitrary constraints on the values of its natural parts and the formula for explicit counting of compositions and a generating function for the number of compositions.
Keywords: composition of number, recurrence relation, generating function, Fibonacci numbers, Tribonacci numbers, Tetranacci numbers, Pentanacci numbers
Mots-clés : Pascal's hyperpyramid, Pascal's pyramid, Pascal's triangle, polynomial coefficients, trinomial coefficients, binomial coefficients
@article{INTO_2025_239_a1,
     author = {O. V. Kuz'min and M. V. Strihar},
     title = {The listing and counting combinatorial algorithm for compositions of a natural number with constraints},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {239},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/}
}
TY  - JOUR
AU  - O. V. Kuz'min
AU  - M. V. Strihar
TI  - The listing and counting combinatorial algorithm for compositions of a natural number with constraints
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2025
SP  - 13
EP  - 24
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/
LA  - ru
ID  - INTO_2025_239_a1
ER  - 
%0 Journal Article
%A O. V. Kuz'min
%A M. V. Strihar
%T The listing and counting combinatorial algorithm for compositions of a natural number with constraints
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2025
%P 13-24
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/
%G ru
%F INTO_2025_239_a1
O. V. Kuz'min; M. V. Strihar. The listing and counting combinatorial algorithm for compositions of a natural number with constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 13-24. http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/