The listing and counting combinatorial algorithm for compositions of a natural number with constraints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 13-24
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we propose a listing and counting algorithm for compositions of a natural number based on combinatorial objects of a hierarchical structure, such as Pascal's triangle, Pascal's pyramid, and Pascal's hyperpyramids. We obtain the recurrent relation that is the basis for listing and counting of compositions of a natural number with an arbitrary constraints on the values of its natural parts and the formula for explicit counting of compositions and a generating function for the number of compositions.
Keywords:
composition of number, recurrence relation, generating function, Fibonacci numbers, Tribonacci numbers, Tetranacci numbers, Pentanacci numbers
Mots-clés : Pascal's hyperpyramid, Pascal's pyramid, Pascal's triangle, polynomial coefficients, trinomial coefficients, binomial coefficients
Mots-clés : Pascal's hyperpyramid, Pascal's pyramid, Pascal's triangle, polynomial coefficients, trinomial coefficients, binomial coefficients
@article{INTO_2025_239_a1,
author = {O. V. Kuz'min and M. V. Strihar},
title = {The listing and counting combinatorial algorithm for compositions of a natural number with constraints},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {13--24},
publisher = {mathdoc},
volume = {239},
year = {2025},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/}
}
TY - JOUR AU - O. V. Kuz'min AU - M. V. Strihar TI - The listing and counting combinatorial algorithm for compositions of a natural number with constraints JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2025 SP - 13 EP - 24 VL - 239 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/ LA - ru ID - INTO_2025_239_a1 ER -
%0 Journal Article %A O. V. Kuz'min %A M. V. Strihar %T The listing and counting combinatorial algorithm for compositions of a natural number with constraints %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2025 %P 13-24 %V 239 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/ %G ru %F INTO_2025_239_a1
O. V. Kuz'min; M. V. Strihar. The listing and counting combinatorial algorithm for compositions of a natural number with constraints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 2, Tome 239 (2025), pp. 13-24. http://geodesic.mathdoc.fr/item/INTO_2025_239_a1/