Secularity condition for the Broadwell kinetic system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 1, Tome 238 (2025), pp. 49-58

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Broadwell kinetic system for four groups of particles with periodic initial data in a weight space. The solution is sought in a neighborhood of the equilibrium state. The perturbation is expanded in a Fourier series. Conditions for local equilibria for solutions of the Cauchy problem are found.
Keywords: Broadwell kinetic system, Fourier series, weighted space, Cauchy problem
@article{INTO_2025_238_a3,
     author = {S. A. Dukhnovskii},
     title = {Secularity condition for the {Broadwell} kinetic system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {238},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2025_238_a3/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - Secularity condition for the Broadwell kinetic system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2025
SP  - 49
EP  - 58
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2025_238_a3/
LA  - ru
ID  - INTO_2025_238_a3
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T Secularity condition for the Broadwell kinetic system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2025
%P 49-58
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2025_238_a3/
%G ru
%F INTO_2025_238_a3
S. A. Dukhnovskii. Secularity condition for the Broadwell kinetic system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 1, Tome 238 (2025), pp. 49-58. http://geodesic.mathdoc.fr/item/INTO_2025_238_a3/