Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2025_238_a3, author = {S. A. Dukhnovskii}, title = {Secularity condition for the {Broadwell} kinetic system}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {49--58}, publisher = {mathdoc}, volume = {238}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2025_238_a3/} }
TY - JOUR AU - S. A. Dukhnovskii TI - Secularity condition for the Broadwell kinetic system JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2025 SP - 49 EP - 58 VL - 238 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2025_238_a3/ LA - ru ID - INTO_2025_238_a3 ER -
S. A. Dukhnovskii. Secularity condition for the Broadwell kinetic system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 1, Tome 238 (2025), pp. 49-58. http://geodesic.mathdoc.fr/item/INTO_2025_238_a3/
[9] Vasileva O. A., Dukhnovskii S. A., Radkevich E. V., “O lokalnom ravnovesii uravneniya Karlemana”, Mezhvuz. sb. Probl. mat. anal., 78 (2015), 165–190 | Zbl
[10] Vasileva O. A., Dukhnovskii S. A., Radkevich E. V., “O prirode lokalnogo ravnovesiya uravnenii Karlemana i Godunova—Sultangazzina”, Sovr. mat. Fundam. napr., 60 (2016), 23–81
[11] Vedenyapin V. V., Mingalev I. V., Mingalev O. V., “O diskretnykh modelyakh kvantovogo uravneniya Boltsmana”, Mat. sb., 184:11 (1993), 21–38 | Zbl
[12] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, Usp. mat. nauk., 26:3 (1971), 3–51 | MR | Zbl
[13] Dukhnovskii S. A., “Test Penleve i avtomodelnoe reshenie kineticheskoi modeli”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 176 (2020), 91–94 | DOI | MR
[14] Ilin O. V., “Statsionarnye resheniya kineticheskoi modeli Broduella”, Teor. mat. fiz., 170:3 (2012), 481–488 | DOI
[15] Lindblom O., Eiler N., “Reshenie uravnenii Boltsmana dlya diskretnykh skorostei pri pomoschi uravnenii Beitmena i Rikkati”, Teor. mat. fiz., 131:2 (2002), 179–193 | DOI | MR | Zbl
[16] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. Ross. Akad. nauk., 447:4 (2012), 369–373 | MR | Zbl
[17] Dukhnovsky S. A., “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Rep. Mold. Mat., 94:3 (2020), 3–11 | MR | Zbl
[18] Dukhnovsky S. A., “The tanh-function method and the $(G'/G)$-expansion method for the kinetic McKean system”, Differ. Equations Control Processes., 2021, no. 2, 87–100 | MR | Zbl
[19] Dukhnovsky S. A., “Secular terms for the kinetic McKean model”, Differ. Equations Control Processes., 2023, no. 1, 125–136 | DOI | MR | Zbl
[20] Euler N., Steeb W.-H., “Painlevé test and discrete Boltzmann equations”, Austr. J. Phys., 42 (1989), 1–10 | DOI | MR