Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_237_a5, author = {S. G. Shorokhov}, title = {Training a neural network for a hyperbolic equation by using a quasiclassical functional}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {76--86}, publisher = {mathdoc}, volume = {237}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a5/} }
TY - JOUR AU - S. G. Shorokhov TI - Training a neural network for a hyperbolic equation by using a quasiclassical functional JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 76 EP - 86 VL - 237 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_237_a5/ LA - ru ID - INTO_2024_237_a5 ER -
%0 Journal Article %A S. G. Shorokhov %T Training a neural network for a hyperbolic equation by using a quasiclassical functional %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 76-86 %V 237 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_237_a5/ %G ru %F INTO_2024_237_a5
S. G. Shorokhov. Training a neural network for a hyperbolic equation by using a quasiclassical functional. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 76-86. http://geodesic.mathdoc.fr/item/INTO_2024_237_a5/
[1] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973
[2] Filippov V. M., “Variatsionnyi metod resheniya kraevykh zadach dlya volnovogo uravneniya”, Differ. uravn., 20:11 (1984), 1961–1968
[3] Filippov V. M., Savchin V. M., Shorokhov S. G., “Variatsionnye printsipy dlya nepotentsialnykh operatorov”, Itogi nauki tekhn. Sovr. probl. mat. Nov. dostizh., 40 (1992), 3–176
[4] Shalov V. M., “Nekotoroe obobschenie prostranstva K. Fridrikhsa”, Dokl. AN SSSR., 151:2 (1963), 292–294
[5] Shalov V. M., “Reshenie nesamosopryazhennykh uravnenii variatsionnym metodom”, Dokl. AN SSSR., 151:3 (1963), 511–512
[6] Shalov V. M., “Printsip minimuma kvadratichnogo funktsionala dlya giperbolicheskogo uravneniya”, Differ. uravn., 1:10 (1965), 1338–1365
[7] E W., Yu B., “The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems”, Commun. Math. Stat., 6:1 (2018), 1–12
[8] Geneva N., Zabaras N., “Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks”, J. Comput. Phys., 403 (2020), 109056
[9] Raissi M., Perdikaris P., Karniadakis G., “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations”, J. Comput. Phys., 378 (2019), 686–707
[10] Sirignano J., Spiliopoulos K., “DGM: A deep learning algorithm for solving partial differential equations”, J. Comput. Phys., 375 (2018), 1339–1364
[11] Young W. H., “On multiple integration by parts and the second theorem of the mean”, Proc. London Math. Soc., 2:16 (1917), 273–293
[12] Zhu Y., Zabaras N., Koutsourelakis P.-S., Perdikaris P., “Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data”, Journal of Computational Physics, 394 (2019), 56–81