Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_237_a4, author = {M. V. Shamolin}, title = {Invariants of homogeneous dynamic systems of arbitrary odd order with dissipation. {II.} {Fifth-order} systems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {49--75}, publisher = {mathdoc}, volume = {237}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a4/} }
TY - JOUR AU - M. V. Shamolin TI - Invariants of homogeneous dynamic systems of arbitrary odd order with dissipation. II. Fifth-order systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 49 EP - 75 VL - 237 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_237_a4/ LA - ru ID - INTO_2024_237_a4 ER -
%0 Journal Article %A M. V. Shamolin %T Invariants of homogeneous dynamic systems of arbitrary odd order with dissipation. II. Fifth-order systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 49-75 %V 237 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_237_a4/ %G ru %F INTO_2024_237_a4
M. V. Shamolin. Invariants of homogeneous dynamic systems of arbitrary odd order with dissipation. II. Fifth-order systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 49-75. http://geodesic.mathdoc.fr/item/INTO_2024_237_a4/
[1] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967
[2] Burbaki N., Integrirovanie. Mery na lokalno kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977
[3] Veil G., Simmetriya, URSS, M., 2007
[4] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^n$”, Dokl. RAN., 380:1 (2001), 47–50
[5] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^n$”, Dokl. RAN., 383:5 (2002), 635–637
[6] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschennogo giroskopa v $\mathbb{R}^{n}$”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 5 (2003), 37–41
[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979
[8] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izvyu RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27
[9] Ivanova T. A., “Ob uravneniyakh Eilera v modelyakh teoreticheskoi fiziki”, Mat. zametki., 52:2 (1992), 43–51
[10] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971
[11] Klein F., Neevklidova geometriya, URSS, M., 2017
[12] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67
[13] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. mat. mekh., 79:3 (2015), 307–316
[14] Kozlov V. V., “Tenzornye invarianty i integrirovanie differentsialnykh uravnenii”, Usp. mat. nauk., 74:1 (445) (2019), 117–148
[15] Kolmogorov A. N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR., 93:5 (1953), 763–766
[16] Pokhodnya N. V., Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tela”, Vestn. SamGU. Estestvennonauch. ser., 9:100 (2012), 136–150
[17] Pokhodnya N. V., Shamolin M. V., “Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh”, Vestn. SamGU. Estestvennonauch. ser., 9/1:110 (2013), 35–41
[18] Pokhodnya N. V., Shamolin M. V., “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Vestn. SamGU. Estestvennonauch. ser., 7:118 (2014), 60–69
[19] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. mekh., 1989, no. 3, 51–54
[20] Trofimov V. V., “Uravneniya Eilera na konechnomernykh razreshimykh gruppakh Li”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1191–1199
[21] Trofimov V. V., “Simplekticheskie struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1984, no. 6, 31–33
[22] Trofimov V. V., Fomenko A. T., “Metodika postroeniya gamiltonovykh potokov na simmetricheskikh prostranstvakh i integriruemost nekotorykh gidrodinamicheskikh sistem”, Dokl. AN SSSR., 254:6 (1980), 1349–1353
[23] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229
[24] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987
[25] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210
[26] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 364:5 (1999), 627–629
[27] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN., 375:3 (2000), 343–346
[28] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Usp. mat. nauk., 57:1 (2002), 169–170
[29] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $so(4)\times\mathbb{R}^{4}$”, Usp. mat. nauk., 60:6 (2005), 233–234
[30] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010
[31] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170
[32] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 425:3 (2009), 338–342
[33] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Usp. mat. nauk., 65:1 (2010), 189–190
[34] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 437:2 (2011), 190–193
[35] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 440:2 (2011), 187–190
[36] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 444:5 (2012), 506–509
[37] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481
[38] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 453:1 (2013), 46–49
[39] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186
[40] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 449:4 (2013), 416–419
[41] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 457:5 (2014), 542–545
[42] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231
[43] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 461:5 (2015), 533–536
[44] Shamolin M. V., “Polnyi spisok pervykh integralov uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 464:6 (2015), 688–692
[45] Shamolin M. V., “Integriruemye nekonservativnye dinamicheskie sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Differ. uravn., 52:6 (2016), 743–759
[46] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523
[47] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Dokl. RAN., 474:2 (2017), 177–181
[48] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN., 477:2 (2017), 168–172
[49] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, Dokl. RAN., 482:5 (2018), 527–533
[50] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN., 479:3 (2018), 270–276
[51] Shamolin M. V., “Novye sluchai integriruemykh sistem devyatogo poryadka s dissipatsiei”, Dokl. RAN., 489:6 (2019), 592–598
[52] Shamolin M. V., “Novye sluchai integriruemykh sistem pyatogo poryadka s dissipatsiei”, Dokl. RAN., 485:5 (2019), 583–587
[53] Shamolin M. V., “Novye sluchai integriruemykh sistem sedmogo poryadka s dissipatsiei”, Dokl. RAN., 487:4 (2019), 381–386
[54] Shamolin M. V., “Novye sluchai integriruemykh sistem nechetnogo poryadka s dissipatsiei”, Dokl. RAN. Mat. inform. protsessy upravl., 491:1 (2020), 95–101
[55] Shamolin M. V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 494:1 (2020), 105–111
[56] Shamolin M. V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 495:1 (2020), 84–90
[57] Shamolin M. V., “Novye sluchai integriruemosti geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii konechnomernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 500:1 (2021), 78–86
[58] Shamolin M. V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 497:1 (2021), 23–30
[59] Shamolin M. V., “Tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 501:1 (2021), 89–94
[60] Shamolin M. V., “Invariantnye formy ob'ema sistem s tremya stepenyami svobody s peremennoi dissipatsiei”, Dokl. RAN. Mat. inform. protsessy upravl., 507:1 (2022), 86–92
[61] Shamolin M. V., “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii gladkogo konechnomernogo mnogoobraziya. I. Uravneniya geodezicheskikh na kasatelnom rassloenii gladkogo $n$-mernogo mnogoobraziya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 214 (2022), 82–106
[62] Shamolin M. V., “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii gladkogo konechnomernogo mnogoobraziya. II. Uravneniya dvizheniya na kasatelnom rassloenii k $n$-mernomu mnogoobraziyu v potentsialnom silovom pole”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 215 (2022), 81–94
[63] Shamolin M. V., “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii gladkogo konechnomernogo mnogoobraziya. III. Uravneniya dvizheniya na kasatelnom rassloenii k $n$-mernomu mnogoobraziyu v silovom pole s peremennoi dissipatsiei”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 216 (2022), 133–152
[64] Shamolin M. V., “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 205 (2022), 22–54
[65] Shamolin M. V., “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. I. Uravneniya geodezicheskikh”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 210 (2022), 77–95
[66] Shamolin M. V., “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. II. Potentsialnye silovye polya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 211 (2022), 29–40
[67] Shamolin M. V., “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. III. Silovye polya s dissipatsiei”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 212 (2022), 120–138
[68] Shamolin M. V., “Nekotorye tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii dvumernogo mnogoobraziya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 209 (2022), 108–116
[69] Shamolin M. V., “Nekotorye tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 210 (2022), 96–105
[70] Shamolin M. V., “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. I. Porozhdayuschaya zadacha iz dinamiki mnogomernogo tverdogo tela, pomeschennogo v nekonservativnoe pole sil”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 211 (2022), 41–74
[71] Shamolin M. V., “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. II. Obschii klass dinamicheskikh sistem na kasatelnom rassloenii mnogomernoi sfery”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 212 (2022), 139–148
[72] Shamolin M. V., “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. III. Sistemy na kasatelnykh rassloeniyakh gladkikh $n$-mernykh mnogoobrazii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 213 (2022), 96–109
[73] Shamolin M. V., “Sistemy s pyatyu stepenyami svobody s dissipatsiei: analiz i integriruemost. I. Porozhdayuschaya zadacha iz dinamiki mnogomernogo tverdogo tela, pomeschennogo v nekonservativnoe pole sil”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 208 (2022), 91–121
[74] Shamolin M. V., “Sistemy s pyatyu stepenyami svobody s dissipatsiei: analiz i integriruemost. II. Dinamicheskie sistemy na kasatelnykh rassloeniyakh”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 209 (2022), 88–107
[75] Shamolin M. V., “Sistemy s chetyrmya stepenyami svobody s dissipatsiei: analiz i integriruemost”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 205 (2022), 55–94
[76] Shamolin M. V., “Invarianty odnorodnykh dinamicheskikh sistem pyatogo poryadka s dissipatsiei”, Dokl. RAN. Mat. inform. protsessy upravl., 514:1 (2023), 98–106
[77] Shamolin M. V., “Invariantnye formy geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii konechnomernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 512:1 (2023), 10–17
[78] Shamolin M. V., “Invariantnye formy ob'ema geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN. Mat. inform. protsessy upravl., 509:1 (2023), 69–76
[79] Shamolin M. V., “Invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem s tremya stepenyami svobody”, Differ. uravn., 60:3 (2024), 322–345
[80] Shamolin M. V., “Invarianty odnorodnykh dinamicheskikh sistem sedmogo poryadka s dissipatsiei”, Dokl. RAN. Mat. inform. protsessy upravl., 516:1 (2024), 65–74
[81] Shamolin M. V., “Invarianty sistem s malym chislom stepenei svobody, obladayuschikh dissipatsiei”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2024, no. 2, 3–15
[82] Polyanin A. D., Zaitsev V. F., Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, Chapman and Hall, New York, 2017
[83] Poincaré H., Calcul des probabilités, Gauthier-Villars, Paris, 1912
[84] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2528–2557
[85] Shamolin M. V., “Invariants of dynamical systems with dissipation on tangent bundles of low-dimensional manifolds”, Differential Equations, Mathematical Modeling and Computational Algorithms, ed. Vasilyev V., Springer, Cham, 2023, 167–179