Converting a continuous fuzzy signal by a linear dynamic system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 34-48

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we apply the method of Green's function to the search for bounded solutions of a high-order linear differential equation with constant coefficients and a fuzzy right-hand side. A class of equations with positive coefficients and a nonnegative Green's function is distinguished, for which the results on the existence and smoothness of a fuzzy solution bounded on the whole axis are established. We prove that in the case where the right-hand side has a triangular form, the solution has the same form. Examples of radio engineering circuits with fuzzy input signals are considered.
Keywords: fuzzy-valued functions, fuzzy dynamical systems with a constant coefficient, Green's function method.
@article{INTO_2024_237_a3,
     author = {V. L. Khatskevich},
     title = {Converting a continuous fuzzy signal by a linear dynamic system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {237},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a3/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - Converting a continuous fuzzy signal by a linear dynamic system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 34
EP  - 48
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_237_a3/
LA  - ru
ID  - INTO_2024_237_a3
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T Converting a continuous fuzzy signal by a linear dynamic system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 34-48
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_237_a3/
%G ru
%F INTO_2024_237_a3
V. L. Khatskevich. Converting a continuous fuzzy signal by a linear dynamic system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 34-48. http://geodesic.mathdoc.fr/item/INTO_2024_237_a3/