Local bifurcations in one version of the multiplier-accelerator model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 18-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known mathematical model of macroeconomics “multiplier-accelerator” is considered in a nonlinear version with spatial factors. We study two versions of the corresponding boundary-value problem. In the first version, where the spatial dissipation is significant in the linear statement, the boundary-value problem has limit cycles that arise as a result of Andronov–Hopf bifurcations. The second version of the boundary-value problem arises when dissipation in the linear formulation is neglected. In this weakly dissipative version, the boundary-value problem has a countable set of finite-dimensional cycles and tori. All such invariant manifolds are unstable. The analysis of the problem is based on methods of the theory of infinite-dimensional dynamic systems.
Keywords: multiplier-accelerator, nonlinear boundary value problem, invariant manifold, stability, normal form
Mots-clés : bifurcation
@article{INTO_2024_237_a2,
     author = {A. N. Kulikov and D. A. Kulikov and D. G. Frolov},
     title = {Local bifurcations in one version of the multiplier-accelerator model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {237},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
AU  - D. G. Frolov
TI  - Local bifurcations in one version of the multiplier-accelerator model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 18
EP  - 33
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/
LA  - ru
ID  - INTO_2024_237_a2
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%A D. G. Frolov
%T Local bifurcations in one version of the multiplier-accelerator model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 18-33
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/
%G ru
%F INTO_2024_237_a2
A. N. Kulikov; D. A. Kulikov; D. G. Frolov. Local bifurcations in one version of the multiplier-accelerator model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 18-33. http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/

[8] Arnold V. I., Dopolnitelnye glavy teorii differentsialnye uravnenii, Nauka, M., 1978

[9] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.-Izhevsk, 2002

[10] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601

[11] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa otobrazhenii: sokhranenie tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753

[12] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Izd-vo YarGU, Yaroslavl, 1976, 114–129

[13] Kulikov A. N., “Invariantnye tory slabo dissipativnogo varianta uravneniya Ginzburga"– Landau”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 216 (2022), 66–75

[14] Kulikov A. N., Kulikov D. A., “Invariantnye mnogoobraziya slabodissipativnogo varianta nelokalnogo uravneniya Ginzburga"– Landau”, Avtomat. telemekh., 2 (2021), 94–110

[15] Kulikov A. N., Kulikov D. A., “O vozmozhnosti realizatsii stsenariya Landau—Khopfa perekhoda k turbulentnosti v obobschennoi modeli «multiplikator-akselerator»”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 203 (2021), 39–49

[16] Lebedev V. V., Lebedev K. V., Matematicheskoe modelirovanie nastatsionarnykh ekonomicheskikh protsessov, M., 2011

[17] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1968

[18] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[19] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–350

[20] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[21] Yakubov S. Ya., “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniya”, Tr. Mosk. mat. o-va., 23 (1970), 37–60

[22] Kelley A., “The stable, center-stable, center, center-unstable, unstable mamifolds”, J. Differ. Equations., 3 (1967), 546–570

[23] Kulikov A. N., “Inertial invariant manifolds of a nonlinear semigroup of operators in a Hilbert space”, J. Math. Sci., 283:3 (2024), 402–411

[24] Kulikov A. N., Kulikov D. A., Radin M. A., “Analysis of Keynes' mathematical model—effect of spatial factors”, Lobachevskii J. Math., 43:6 (2022), 1345–1357

[25] Marsden J. E., McCraken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976

[26] Puu T., Attractors, Bifurcations, and Chaos: Nonlinear Phenomena in Economics, Springer-Verlag, New York, 2000

[27] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991