Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_237_a2, author = {A. N. Kulikov and D. A. Kulikov and D. G. Frolov}, title = {Local bifurcations in one version of the multiplier-accelerator model}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {18--33}, publisher = {mathdoc}, volume = {237}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/} }
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov AU - D. G. Frolov TI - Local bifurcations in one version of the multiplier-accelerator model JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 18 EP - 33 VL - 237 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/ LA - ru ID - INTO_2024_237_a2 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %A D. G. Frolov %T Local bifurcations in one version of the multiplier-accelerator model %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 18-33 %V 237 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/ %G ru %F INTO_2024_237_a2
A. N. Kulikov; D. A. Kulikov; D. G. Frolov. Local bifurcations in one version of the multiplier-accelerator model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 18-33. http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/
[8] Arnold V. I., Dopolnitelnye glavy teorii differentsialnye uravnenii, Nauka, M., 1978
[9] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.-Izhevsk, 2002
[10] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601
[11] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa otobrazhenii: sokhranenie tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753
[12] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Izd-vo YarGU, Yaroslavl, 1976, 114–129
[13] Kulikov A. N., “Invariantnye tory slabo dissipativnogo varianta uravneniya Ginzburga"– Landau”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 216 (2022), 66–75
[14] Kulikov A. N., Kulikov D. A., “Invariantnye mnogoobraziya slabodissipativnogo varianta nelokalnogo uravneniya Ginzburga"– Landau”, Avtomat. telemekh., 2 (2021), 94–110
[15] Kulikov A. N., Kulikov D. A., “O vozmozhnosti realizatsii stsenariya Landau—Khopfa perekhoda k turbulentnosti v obobschennoi modeli «multiplikator-akselerator»”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 203 (2021), 39–49
[16] Lebedev V. V., Lebedev K. V., Matematicheskoe modelirovanie nastatsionarnykh ekonomicheskikh protsessov, M., 2011
[17] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1968
[18] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977
[19] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–350
[20] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970
[21] Yakubov S. Ya., “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniya”, Tr. Mosk. mat. o-va., 23 (1970), 37–60
[22] Kelley A., “The stable, center-stable, center, center-unstable, unstable mamifolds”, J. Differ. Equations., 3 (1967), 546–570
[23] Kulikov A. N., “Inertial invariant manifolds of a nonlinear semigroup of operators in a Hilbert space”, J. Math. Sci., 283:3 (2024), 402–411
[24] Kulikov A. N., Kulikov D. A., Radin M. A., “Analysis of Keynes' mathematical model—effect of spatial factors”, Lobachevskii J. Math., 43:6 (2022), 1345–1357
[25] Marsden J. E., McCraken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976
[26] Puu T., Attractors, Bifurcations, and Chaos: Nonlinear Phenomena in Economics, Springer-Verlag, New York, 2000
[27] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991