Local bifurcations in one version of the multiplier-accelerator model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 18-33

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known mathematical model of macroeconomics “multiplier-accelerator” is considered in a nonlinear version with spatial factors. We study two versions of the corresponding boundary-value problem. In the first version, where the spatial dissipation is significant in the linear statement, the boundary-value problem has limit cycles that arise as a result of Andronov–Hopf bifurcations. The second version of the boundary-value problem arises when dissipation in the linear formulation is neglected. In this weakly dissipative version, the boundary-value problem has a countable set of finite-dimensional cycles and tori. All such invariant manifolds are unstable. The analysis of the problem is based on methods of the theory of infinite-dimensional dynamic systems.
Keywords: multiplier-accelerator, nonlinear boundary value problem, invariant manifold, stability, normal form
Mots-clés : bifurcation
@article{INTO_2024_237_a2,
     author = {A. N. Kulikov and D. A. Kulikov and D. G. Frolov},
     title = {Local bifurcations in one version of the multiplier-accelerator model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {237},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
AU  - D. G. Frolov
TI  - Local bifurcations in one version of the multiplier-accelerator model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 18
EP  - 33
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/
LA  - ru
ID  - INTO_2024_237_a2
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%A D. G. Frolov
%T Local bifurcations in one version of the multiplier-accelerator model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 18-33
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/
%G ru
%F INTO_2024_237_a2
A. N. Kulikov; D. A. Kulikov; D. G. Frolov. Local bifurcations in one version of the multiplier-accelerator model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 18-33. http://geodesic.mathdoc.fr/item/INTO_2024_237_a2/