On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a separable Hilbert space, a parabolic equation with a special time-weighted integral condition is considered. Conditions are obtained under which the solution to the problem is more smooth than a weak solution, the existence and uniqueness of which was proved earlier.
Mots-clés : parabolic equation, nonlocal-in-time condition
Keywords: smooth solvability, generalized solvability
@article{INTO_2024_237_a0,
     author = {A. S. Bondarev and A. A. Petrova and O. M. Pirovskikh},
     title = {On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {237},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a0/}
}
TY  - JOUR
AU  - A. S. Bondarev
AU  - A. A. Petrova
AU  - O. M. Pirovskikh
TI  - On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 3
EP  - 9
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_237_a0/
LA  - ru
ID  - INTO_2024_237_a0
ER  - 
%0 Journal Article
%A A. S. Bondarev
%A A. A. Petrova
%A O. M. Pirovskikh
%T On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 3-9
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_237_a0/
%G ru
%F INTO_2024_237_a0
A. S. Bondarev; A. A. Petrova; O. M. Pirovskikh. On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2024_237_a0/

[1] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965

[2] Bondarev A. S., “Razreshimost variatsionnogo parabolicheskogo uravneniya s periodicheskim usloviem na reshenie”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2015, no. 4, 78–88

[3] Bondarev A. S., Petrova A. A., Pirovskikh O. M., “Slabaya razreshimost variatsionnogo parabolicheskogo uravneniya s nelokalnym po vremeni usloviem na reshenie”, Sovr. mat. Fundam. napr., 70:4 (2024)

[4] Iosida K., Funktsionalnyi analiz, Mir, M., 1967

[5] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[6] Ladyzhenskaya O. A., “O reshenii nestatsionarnykh operatornykh uravnenii”, Mat. sb., 39:4 (1956), 491–524

[7] Oben Zh. P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977

[8] Petrova A. A., “Gladkaya razreshimost parabolicheskogo uravneniya s vesovym integralnym usloviem na reshenie”, Mat. Mezhdunar. konf. «Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina» (Voronezh, 25–31 yanvarya 2016 g.), YNauchnaya kniga, Voronezh, 2016, 320–323

[9] Petrova A. A., “Skhodimost metoda Galerkina priblizhennogo resheniya parabolicheskogo uravneniya s simmetrichnym operatorom i vesovym integralnym usloviem”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2015, no. 4, 160–174

[10] Smagin V. V., “O gladkoi razreshimosti variatsionnykh zadach parabolicheskogo tipa”, Tr. mat. f-ta (nov. seriya). Voronezh. gos. un-t., 1998, no. 3, 67–72

[11] Sobolevskii P. E., “Obobschennye resheniya differentsialnykh uravnenii pervogo poryadka v gilbertovom prostranstve”, Dokl. AN SSSR., 122:6 (1958), 994–996

[12] Tikhonov I. V., “Teoremy edinstvennosti v lineinykh nelokalnykh zadachakh dlya abstraktnykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 67:2 (2003), 133–166