Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_237_a0, author = {A. S. Bondarev and A. A. Petrova and O. M. Pirovskikh}, title = {On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--9}, publisher = {mathdoc}, volume = {237}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_237_a0/} }
TY - JOUR AU - A. S. Bondarev AU - A. A. Petrova AU - O. M. Pirovskikh TI - On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 3 EP - 9 VL - 237 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_237_a0/ LA - ru ID - INTO_2024_237_a0 ER -
%0 Journal Article %A A. S. Bondarev %A A. A. Petrova %A O. M. Pirovskikh %T On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 3-9 %V 237 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_237_a0/ %G ru %F INTO_2024_237_a0
A. S. Bondarev; A. A. Petrova; O. M. Pirovskikh. On the solvability of a variational parabolic equation with a nonlocal-in-time condition on the solution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 3, Tome 237 (2024), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2024_237_a0/
[1] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965
[2] Bondarev A. S., “Razreshimost variatsionnogo parabolicheskogo uravneniya s periodicheskim usloviem na reshenie”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2015, no. 4, 78–88
[3] Bondarev A. S., Petrova A. A., Pirovskikh O. M., “Slabaya razreshimost variatsionnogo parabolicheskogo uravneniya s nelokalnym po vremeni usloviem na reshenie”, Sovr. mat. Fundam. napr., 70:4 (2024)
[4] Iosida K., Funktsionalnyi analiz, Mir, M., 1967
[5] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[6] Ladyzhenskaya O. A., “O reshenii nestatsionarnykh operatornykh uravnenii”, Mat. sb., 39:4 (1956), 491–524
[7] Oben Zh. P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977
[8] Petrova A. A., “Gladkaya razreshimost parabolicheskogo uravneniya s vesovym integralnym usloviem na reshenie”, Mat. Mezhdunar. konf. «Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina» (Voronezh, 25–31 yanvarya 2016 g.), YNauchnaya kniga, Voronezh, 2016, 320–323
[9] Petrova A. A., “Skhodimost metoda Galerkina priblizhennogo resheniya parabolicheskogo uravneniya s simmetrichnym operatorom i vesovym integralnym usloviem”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2015, no. 4, 160–174
[10] Smagin V. V., “O gladkoi razreshimosti variatsionnykh zadach parabolicheskogo tipa”, Tr. mat. f-ta (nov. seriya). Voronezh. gos. un-t., 1998, no. 3, 67–72
[11] Sobolevskii P. E., “Obobschennye resheniya differentsialnykh uravnenii pervogo poryadka v gilbertovom prostranstve”, Dokl. AN SSSR., 122:6 (1958), 994–996
[12] Tikhonov I. V., “Teoremy edinstvennosti v lineinykh nelokalnykh zadachakh dlya abstraktnykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 67:2 (2003), 133–166