Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_236_a4, author = {O. B. Tsekhan}, title = {Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {49--71}, publisher = {mathdoc}, volume = {236}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_236_a4/} }
TY - JOUR AU - O. B. Tsekhan TI - Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 49 EP - 71 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_236_a4/ LA - ru ID - INTO_2024_236_a4 ER -
%0 Journal Article %A O. B. Tsekhan %T Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 49-71 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_236_a4/ %G ru %F INTO_2024_236_a4
O. B. Tsekhan. Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 49-71. http://geodesic.mathdoc.fr/item/INTO_2024_236_a4/
[1] Abgaryan K. A., “Rasscheplenie singulyarno vozmuschennoi mnogotempovoi sistemy”, Izv. AN ArmSSRyu, 14:5 (1979), 327–337
[2] Antonevich A. B., Lineinye funktsionalnye uravneniya: Operatornyi podkhod, Universitetskoe, Minsk, 1988
[3] Astrovskii A. I., Nablyudaemost lineinykh nestatsionarnykh sistem, MIU, Minsk, 2007
[4] Astrovskii A. I., Gaishun I. V., “Ravnomernaya i approksimativnaya nablyudaemost lineinykh nestatsionarnykh sistem”, Avtomat. telemekh., 1998, no. 7, 3–13
[5] Astrovskii A. I., Gaishun I. V., Lineinye sistemy s kvazidifferentsiruemymi koeffitsientami: upravlyaemost i nablyudaemost dvizhenii, Belaruskaya navuka, Minsk, 2013
[6] Astrovskii A. I., Gaishun I. V., “Otsenivanie sostoyanii lineinykh nestatsionarnykh sistem nablyudeniya”, Differ. uravn., 55:3 (2019), 370–379
[7] Barabanov E. A., “Kinematicheskoe podobie lineinykh differentsialnykh sistem s parametrom-mnozhitelem pri proizvodnoi”, Tr. sem. im. I. G. Petrovskogo., 2014, no. 30, 42-–63
[8] Bogdanov Yu. S., “Ob asimptoticheski ekvivalentnykh lineinykh differentsialnykh sistemakh”, Differ. uravn., 1:6 (1965), 707–716
[9] Bogolyubov N. N., Mitropolskii Yu. A., “Metod integralnykh mnogoobrazii v nelineinoi mekhanike”, Tr. Mezhdunar. simp. po nelin. koleb., v. 1, Izd-vo AN USSR, Kiev, 1963, 93–154
[10] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973
[11] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Mat. anal., 20 (1982), 3–77
[12] Voropaeva N. V., Sobolev V. A., “Dekompozitsiya lineino-kvadratichnoi zadachi optimalnogo upravleniya s bystrymi i medlennymi peremennymi”, Avtomat. telemekh., 2006, no. 8, 3–-11
[13] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009
[14] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t mat. NAN Belarusi, Minsk, 1999
[15] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomat. telemekh., 2006, no. 1, 3–51
[16] Kalinin A. I., Asimptoticheskie metody optimizatsii vozmuschennykh dinamicheskikh sistem, Ekoperspektiva, Minsk, 2000
[17] Kalman P., Falb M., Arbib M., Ocherki po matematicheskoi teorii sistem, Editorial URSS, M., 2004
[18] Kirillova F. M., Marchenko V. M., Funktsionalnye preobrazovaniya i nekotorye kanonicheskie formy v lineinykh sistemakh s zapazdyvaniem, Izd-vo In-ta matematiki AN BSSSR, Minsk, 1978
[19] Kopeikina T. B., “Ob upravlyaemosti lineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differ. uravn., 25:9 (1989), 1508–1518
[20] Kurina G. A., “O povedenii mnozhestv dostizhimosti lineinykh matrichno singulyarno vozmuschennykh sistem”, Tr. Mat. in-ta im. V. A. Steklova RAN., 211 (1995), 316–325
[21] Kurina G. A., “O rasscheplenii lineinykh sistem, ne razreshennykh otnositelno proizvodnoi”, Izv. vuzov. Mat., 1992, no. 4, 26–33
[22] Kurina G. A., Kalashnikova M. A., “Singulyarno vozmuschennye zadachi s raznotempovymi bystrymi peremennymi”, Avtomat. telemekh., 2022, no. 11, 3–61
[23] Mazanik S. A., Preobrazovaniya Lyapunova lineinykh differentsialnykh sistem, BGU, Minsk, 2008
[24] Marchenko V. M., “Preobrazovaniya sistem s zapazdyvayuschim argumentom”, Differ. uravn., 12:10 (1977), 1882–1884
[25] Marchenko V. M., Luazo Zh.-Zh., “Realizatsiya dinamicheskikh sistem v shkalakh sistem s posledeistviem: I. Realizuemost”, Differ. uravn., 42:11 (2006), 1515–1523
[26] Osipova O. V., Cherevko І. M., “Asimptotichna dekompozitsiya liniinikh singulyarno zburenikh sistem”, Bukovin. mat. zh., 1:3-4 (2013), 114–118
[27] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019
[28] Sobolev V. A., Schepakina E. A., “Metod dekompozitsii v zadachakh upravleniya manipulyatsionnymi robotami”, Mat. XVI Mezhdunar. nauch. konf. «Ustoichivost i kolebaniya nelineinykh sistem upravleniya» (konferentsiya Pyatnitskogo), In-t probl. upravl. im. V. A. Trapeznikova RAN, M., 2022, 410–413
[29] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988
[30] Khartovskii V. E., Upravlenie lineinymi sistemami neitralnogo tipa: kachestvennyi analiz i realizatsiya obratnykh svyazei, Grodno, 2022
[31] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984
[32] Tsekhan O. B., “Rasscheplyayuschee preobrazovanie dlya lineinoi statsionarnoi singulyarno vozmuschennoi sistemy s zapazdyvaniem i ego primenenie k analizu i upravleniyu spektrom”, Vesn. Grodz. dzyarzh. un-ta imya Yanki Kupaly. Ser. 2. Mat. Fiz. Іnfarm. Vylich. tekhn. kiravanne., 7:1 (2017), 50–61
[33] Tsekhan O. B., “Dostatochnye usloviya spektralnoi upravlyaemosti na osnove dekompozitsii lineinoi statsionarnoi singulyarno vozmuschennoi sistemy s zapazdyvaniem”, Vesn. Grodz. dzyarzh. un-ta imya Yanki Kupaly. Ser. 2. Mat. Fiz. Іnfarm. Vylich. tekhn. kiravanne., 7:3 (2017), 51–65
[34] Tsekhan O. B., “Dekompozitsiya singulyarno vozmuschennoi funktsionalno-differentsialnoi sistemy na osnove nevyrozhdennogo preobrazovaniya”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 190 (2021), 130–143
[35] Tsekhan O. B., “Asimptoticheskaya approksimatsiya resheniya odnoi lineinoi nestatsionarnoi singulyarno vozmuschennoi sistemy s postoyannym zapazdyvaniem”, Vesn. Grodz. dzyarzh. un-ta imya Yanki Kupaly. Ser. 2. Mat. Fiz. Іnfarm. Vylich. tekhn. kiravanne., 14:1 (2024), 37–47
[36] Abed E., “Decomposition and stability for multiparameter singular perturbation problems”, IEEE Trans. Automat. Control., 31:10 (1986), 925–934
[37] Califano C., Moog C. H., “Canonical forms of time-delay systems”, Proc. 51st IEEE Conference on Decision and Control (CDC) (December 10-13, 2012, Maui, Hawaii, USA), 2012, 3862–3867
[38] Chang K., “Singular perturbations of a general boundary value problem”, SIAM J. Math. Anal., 3:3 (1972), 520–526
[39] Cherevko I. M., Osypova O., “Asymptotic decomposition of linear singularly perturbed multiscale systems”, Miskolc Math. Notes., 16:2 (2015), 729–745
[40] Fridman E., Introduction to Time-Delay Systems: Analysis and Control, Birkhäuser, Cham, 2014
[41] Fridman E., “Decoupling transformation of singularly-perturbed systems with small delays and its applications”, Z. Angew. Math. Mech. Berlin, 76 (1996), 201–204
[42] Fridman E., “Exact slow-fast decomposition of the nonlinear singularly perturbed optimal control problem”, Systems Control Lett., 40 (2000), 121–131
[43] Gajic Z., Shen X., Parallel Algorithms for Optimal Control of Large Scale Linear Systems, Springer, London, 1993
[44] Glizer V. Y., “Stabilizability conditions for one class of linear singularly perturbed differential-difference systems”, Proc. 2019 IEEE 15th Int. Conf. on Control and Automation (ICCA) (July 16-19, 2019, Edinburgh, Scotland), 2019, 1167–1172
[45] Glizer V. Y., Controllability of Singularly Perturbed Linear Time Delay Systems, Birkhäuser, Cham, 2021
[46] Glizer V. Y., Feigin Y., Fridman E., Margaliot M., “A new approach to exact slow-fast decomposition of singularly perturbed linear systems with small delays”, Proc. 53rd IEEE Conf. on Decision and Control (December 15-17, 2014, Los Angeles, California, USA), 2014, 451–456
[47] Glizer V. Y., Fridman E., Feigin Y., “A Novel approach to exact slow-fast decomposition of linear singularly perturbed systems with small delays”, SIAM J. Control Optim., 55:1 (2017), 236–274
[48] Kokotovic P. V., Khalil H. K., O'Reilly J., Singular Perturbations Methods in Control: Analysis and Design, Academic Press, New York, 1999
[49] Kurina G. A., Dmitriev M. G., Naidu Desineni S., “Discrete singularly perturbed control problems (a survey)”, Dyn. Contin. Discrete Impuls. Syst. Ser. B. Appl. Algorithms., 24 (2017), 335–370
[50] Ladde G. S., Siljak D. D., “Multiparameter singular perturbations of linear systems with multiple time scales”, Automatica., 19:4 (1983), 385–394
[51] Magalhaes L. T., “Invariant manifolds for singularly perturbed linear functional differential equations”, J. Differ. Equations., 54:3 (1984), 310–345
[52] Mitropol'skii Yu. A. , Fodchuk V. I. Klevchuk I. I., “Integral manifolds, stability, and bifurcation of solutions of singularly perturbed functional-differential equations”, Ukr. Mat. Zh., 38:3 (1986), 335–340
[53] Naidu D. S., “Singular perturbations and time scales in control theory and applications: An overview”, Dyn. Contin. Discrete Impuls. Syst. Ser. B. Appl. Algorithms., 2002, no. 9, 233-278
[54] Naligama C. A., Tsekhan O. B., “Decoupling of three-time-scale linear time-invariant singularly perturbed control systems with state delay based on a nondegenerate transformation”, Vesn. Yanka Kupala State Univ. Grodno. Ser. 2. Math. Phys. Inform. Comput. Technol. Control., 11:3 (2021), 27–36
[55] Pawluszewicz E., Tsekhan O., “Stability and stabilisability of the singularly perturbed system with delay on time scales: a decomposition approach”, Int. J. Control., 95:9 (2021), 2406–2419
[56] Pekar L., Gao Q., “Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results”, IEEE Acc., 6:1 (2018), 35457–35491
[57] Perestyuk M. O., Cherevko I. M., “Decomposition of linear singularly perturbed functional differential equations”, Nonlin. Oscil., 4:3 (2001), 345–353
[58] Perestyuk N., Cherevko I. M., “Investigation of the integral manifolds of singularly perturbed functional differential equations”, Miskolc Math. Notes., 3:1 (2002), 47–58
[59] Phillips R. G., “The equivalence of time-scale decomposition techniques used in the analysis and design of linear systems”, Int. J. Control., 37:6 (1983), 1239–1257
[60] Prljaca N., Gajic Z., “General transformation for block diagonalization of multitime-scale singularly perturbed linear systems”, IEEE Trans. Automat. Control., 53:5 (2008), 1303–1305
[61] Sobolev V. A., “Integral manifolds, stability and decomposition of singularly perturbed systems in Banach space”, Acta Sci. Math., 51:3-4 (1987), 491-500
[62] Shimjith S. R., Tiwari A. P., Bandyopadhyay B., Modeling and Control of a Large Nuclear Reactor: A three-time-scale Approach, Springer, Berlin, 2013
[63] Strygin V. V., Sharuda D. V., “Asymptotic expansion of a solution of stiff systems of delay differential equations”, IFAC Proc. Vol., 33:23 (2000), 287–289
[64] Tsekhan O. B., “Complete controllability conditions for linear singularly perturbed time-invariant systems with multiple delays via Chang-type transformation”, Axioms., 8 (2019), 71, 1–19
[65] Tsekhan O., Pawluszewicz E., “Slow-fast decomposition of singularly perturbed system with delay on time scales”, Proc. ICCC'2019 20th Int. Carpath. Control Conf. (May 26–29, 2019, Krakow-Wieliczka), 2019, 1–5
[66] Tsekhan O., “Approximation of the solution based on the decoupling transformation of linear time-varying singularly perturbed system with delay”, Dynamic Control and Optimization, eds. Tchemisova T. V., Torres D. F. M., Plakhov A. Y., Springer, Cham, 2021, 77–97
[67] Yang X., Zhu J. J., “Chang transformation for decoupling of singularly perturbed linear slowly time-varying systems”, Proc. 51st IEEE Conference on Decision and Control (CDC) (December 10-13, 2012, Maui, Hawaii, USA), 2012, 5755–5760
[68] Yang X., Zhu J. J., “A generalization of Chang transformation for linear time-varying systems”, Proc. 49th IEEE Conf. on Decision and Control (December 15-17, 2010, Atlanta, GA, USA), 2010, 6863–6869