Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 49-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of splitting with respect to rates in change of variables is developed for a linear nonstationary singularly perturbed system with constant delay in the equation for slow variables. The splitting method is based on an algebraic approach, namely, the immersion of the system with delay into a family of systems with an extended state space, and a nonlocal change of variables. The existence is proved and the asymptotics of the Lyapunov transformation is constructed, which generalizes the splitting Chang transformation to systems with delay and performs a complete splitting of a two-rate system with constant delay into two independent subsystems of lower dimensions than the original system: separately for the fast and slow variables. We prove that the split system is algebraically and asymptotically equivalent to the original system in the extended state space. The asymptotics is constructed and the action of asymptotic approximations of the splitting transform is examined.
Keywords: singularly perturbed system, nonstationary system, delay, splitting transformation, asymptotic approximation
@article{INTO_2024_236_a4,
     author = {O. B. Tsekhan},
     title = {Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {49--71},
     publisher = {mathdoc},
     volume = {236},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_236_a4/}
}
TY  - JOUR
AU  - O. B. Tsekhan
TI  - Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 49
EP  - 71
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_236_a4/
LA  - ru
ID  - INTO_2024_236_a4
ER  - 
%0 Journal Article
%A O. B. Tsekhan
%T Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 49-71
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_236_a4/
%G ru
%F INTO_2024_236_a4
O. B. Tsekhan. Splitting transformation for a linear nonstationary singularly perturbed system with constant delay in the equation for the slow variable. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 49-71. http://geodesic.mathdoc.fr/item/INTO_2024_236_a4/

[1] Abgaryan K. A., “Rasscheplenie singulyarno vozmuschennoi mnogotempovoi sistemy”, Izv. AN ArmSSRyu, 14:5 (1979), 327–337

[2] Antonevich A. B., Lineinye funktsionalnye uravneniya: Operatornyi podkhod, Universitetskoe, Minsk, 1988

[3] Astrovskii A. I., Nablyudaemost lineinykh nestatsionarnykh sistem, MIU, Minsk, 2007

[4] Astrovskii A. I., Gaishun I. V., “Ravnomernaya i approksimativnaya nablyudaemost lineinykh nestatsionarnykh sistem”, Avtomat. telemekh., 1998, no. 7, 3–13

[5] Astrovskii A. I., Gaishun I. V., Lineinye sistemy s kvazidifferentsiruemymi koeffitsientami: upravlyaemost i nablyudaemost dvizhenii, Belaruskaya navuka, Minsk, 2013

[6] Astrovskii A. I., Gaishun I. V., “Otsenivanie sostoyanii lineinykh nestatsionarnykh sistem nablyudeniya”, Differ. uravn., 55:3 (2019), 370–379

[7] Barabanov E. A., “Kinematicheskoe podobie lineinykh differentsialnykh sistem s parametrom-mnozhitelem pri proizvodnoi”, Tr. sem. im. I. G. Petrovskogo., 2014, no. 30, 42-–63

[8] Bogdanov Yu. S., “Ob asimptoticheski ekvivalentnykh lineinykh differentsialnykh sistemakh”, Differ. uravn., 1:6 (1965), 707–716

[9] Bogolyubov N. N., Mitropolskii Yu. A., “Metod integralnykh mnogoobrazii v nelineinoi mekhanike”, Tr. Mezhdunar. simp. po nelin. koleb., v. 1, Izd-vo AN USSR, Kiev, 1963, 93–154

[10] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973

[11] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Mat. anal., 20 (1982), 3–77

[12] Voropaeva N. V., Sobolev V. A., “Dekompozitsiya lineino-kvadratichnoi zadachi optimalnogo upravleniya s bystrymi i medlennymi peremennymi”, Avtomat. telemekh., 2006, no. 8, 3–-11

[13] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009

[14] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t mat. NAN Belarusi, Minsk, 1999

[15] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomat. telemekh., 2006, no. 1, 3–51

[16] Kalinin A. I., Asimptoticheskie metody optimizatsii vozmuschennykh dinamicheskikh sistem, Ekoperspektiva, Minsk, 2000

[17] Kalman P., Falb M., Arbib M., Ocherki po matematicheskoi teorii sistem, Editorial URSS, M., 2004

[18] Kirillova F. M., Marchenko V. M., Funktsionalnye preobrazovaniya i nekotorye kanonicheskie formy v lineinykh sistemakh s zapazdyvaniem, Izd-vo In-ta matematiki AN BSSSR, Minsk, 1978

[19] Kopeikina T. B., “Ob upravlyaemosti lineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differ. uravn., 25:9 (1989), 1508–1518

[20] Kurina G. A., “O povedenii mnozhestv dostizhimosti lineinykh matrichno singulyarno vozmuschennykh sistem”, Tr. Mat. in-ta im. V. A. Steklova RAN., 211 (1995), 316–325

[21] Kurina G. A., “O rasscheplenii lineinykh sistem, ne razreshennykh otnositelno proizvodnoi”, Izv. vuzov. Mat., 1992, no. 4, 26–33

[22] Kurina G. A., Kalashnikova M. A., “Singulyarno vozmuschennye zadachi s raznotempovymi bystrymi peremennymi”, Avtomat. telemekh., 2022, no. 11, 3–61

[23] Mazanik S. A., Preobrazovaniya Lyapunova lineinykh differentsialnykh sistem, BGU, Minsk, 2008

[24] Marchenko V. M., “Preobrazovaniya sistem s zapazdyvayuschim argumentom”, Differ. uravn., 12:10 (1977), 1882–1884

[25] Marchenko V. M., Luazo Zh.-Zh., “Realizatsiya dinamicheskikh sistem v shkalakh sistem s posledeistviem: I. Realizuemost”, Differ. uravn., 42:11 (2006), 1515–1523

[26] Osipova O. V., Cherevko І. M., “Asimptotichna dekompozitsiya liniinikh singulyarno zburenikh sistem”, Bukovin. mat. zh., 1:3-4 (2013), 114–118

[27] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019

[28] Sobolev V. A., Schepakina E. A., “Metod dekompozitsii v zadachakh upravleniya manipulyatsionnymi robotami”, Mat. XVI Mezhdunar. nauch. konf. «Ustoichivost i kolebaniya nelineinykh sistem upravleniya» (konferentsiya Pyatnitskogo), In-t probl. upravl. im. V. A. Trapeznikova RAN, M., 2022, 410–413

[29] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988

[30] Khartovskii V. E., Upravlenie lineinymi sistemami neitralnogo tipa: kachestvennyi analiz i realizatsiya obratnykh svyazei, Grodno, 2022

[31] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984

[32] Tsekhan O. B., “Rasscheplyayuschee preobrazovanie dlya lineinoi statsionarnoi singulyarno vozmuschennoi sistemy s zapazdyvaniem i ego primenenie k analizu i upravleniyu spektrom”, Vesn. Grodz. dzyarzh. un-ta imya Yanki Kupaly. Ser. 2. Mat. Fiz. Іnfarm. Vylich. tekhn. kiravanne., 7:1 (2017), 50–61

[33] Tsekhan O. B., “Dostatochnye usloviya spektralnoi upravlyaemosti na osnove dekompozitsii lineinoi statsionarnoi singulyarno vozmuschennoi sistemy s zapazdyvaniem”, Vesn. Grodz. dzyarzh. un-ta imya Yanki Kupaly. Ser. 2. Mat. Fiz. Іnfarm. Vylich. tekhn. kiravanne., 7:3 (2017), 51–65

[34] Tsekhan O. B., “Dekompozitsiya singulyarno vozmuschennoi funktsionalno-differentsialnoi sistemy na osnove nevyrozhdennogo preobrazovaniya”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 190 (2021), 130–143

[35] Tsekhan O. B., “Asimptoticheskaya approksimatsiya resheniya odnoi lineinoi nestatsionarnoi singulyarno vozmuschennoi sistemy s postoyannym zapazdyvaniem”, Vesn. Grodz. dzyarzh. un-ta imya Yanki Kupaly. Ser. 2. Mat. Fiz. Іnfarm. Vylich. tekhn. kiravanne., 14:1 (2024), 37–47

[36] Abed E., “Decomposition and stability for multiparameter singular perturbation problems”, IEEE Trans. Automat. Control., 31:10 (1986), 925–934

[37] Califano C., Moog C. H., “Canonical forms of time-delay systems”, Proc. 51st IEEE Conference on Decision and Control (CDC) (December 10-13, 2012, Maui, Hawaii, USA), 2012, 3862–3867

[38] Chang K., “Singular perturbations of a general boundary value problem”, SIAM J. Math. Anal., 3:3 (1972), 520–526

[39] Cherevko I. M., Osypova O., “Asymptotic decomposition of linear singularly perturbed multiscale systems”, Miskolc Math. Notes., 16:2 (2015), 729–745

[40] Fridman E., Introduction to Time-Delay Systems: Analysis and Control, Birkhäuser, Cham, 2014

[41] Fridman E., “Decoupling transformation of singularly-perturbed systems with small delays and its applications”, Z. Angew. Math. Mech. Berlin, 76 (1996), 201–204

[42] Fridman E., “Exact slow-fast decomposition of the nonlinear singularly perturbed optimal control problem”, Systems Control Lett., 40 (2000), 121–131

[43] Gajic Z., Shen X., Parallel Algorithms for Optimal Control of Large Scale Linear Systems, Springer, London, 1993

[44] Glizer V. Y., “Stabilizability conditions for one class of linear singularly perturbed differential-difference systems”, Proc. 2019 IEEE 15th Int. Conf. on Control and Automation (ICCA) (July 16-19, 2019, Edinburgh, Scotland), 2019, 1167–1172

[45] Glizer V. Y., Controllability of Singularly Perturbed Linear Time Delay Systems, Birkhäuser, Cham, 2021

[46] Glizer V. Y., Feigin Y., Fridman E., Margaliot M., “A new approach to exact slow-fast decomposition of singularly perturbed linear systems with small delays”, Proc. 53rd IEEE Conf. on Decision and Control (December 15-17, 2014, Los Angeles, California, USA), 2014, 451–456

[47] Glizer V. Y., Fridman E., Feigin Y., “A Novel approach to exact slow-fast decomposition of linear singularly perturbed systems with small delays”, SIAM J. Control Optim., 55:1 (2017), 236–274

[48] Kokotovic P. V., Khalil H. K., O'Reilly J., Singular Perturbations Methods in Control: Analysis and Design, Academic Press, New York, 1999

[49] Kurina G. A., Dmitriev M. G., Naidu Desineni S., “Discrete singularly perturbed control problems (a survey)”, Dyn. Contin. Discrete Impuls. Syst. Ser. B. Appl. Algorithms., 24 (2017), 335–370

[50] Ladde G. S., Siljak D. D., “Multiparameter singular perturbations of linear systems with multiple time scales”, Automatica., 19:4 (1983), 385–394

[51] Magalhaes L. T., “Invariant manifolds for singularly perturbed linear functional differential equations”, J. Differ. Equations., 54:3 (1984), 310–345

[52] Mitropol'skii Yu. A. , Fodchuk V. I. Klevchuk I. I., “Integral manifolds, stability, and bifurcation of solutions of singularly perturbed functional-differential equations”, Ukr. Mat. Zh., 38:3 (1986), 335–340

[53] Naidu D. S., “Singular perturbations and time scales in control theory and applications: An overview”, Dyn. Contin. Discrete Impuls. Syst. Ser. B. Appl. Algorithms., 2002, no. 9, 233-278

[54] Naligama C. A., Tsekhan O. B., “Decoupling of three-time-scale linear time-invariant singularly perturbed control systems with state delay based on a nondegenerate transformation”, Vesn. Yanka Kupala State Univ. Grodno. Ser. 2. Math. Phys. Inform. Comput. Technol. Control., 11:3 (2021), 27–36

[55] Pawluszewicz E., Tsekhan O., “Stability and stabilisability of the singularly perturbed system with delay on time scales: a decomposition approach”, Int. J. Control., 95:9 (2021), 2406–2419

[56] Pekar L., Gao Q., “Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results”, IEEE Acc., 6:1 (2018), 35457–35491

[57] Perestyuk M. O., Cherevko I. M., “Decomposition of linear singularly perturbed functional differential equations”, Nonlin. Oscil., 4:3 (2001), 345–353

[58] Perestyuk N., Cherevko I. M., “Investigation of the integral manifolds of singularly perturbed functional differential equations”, Miskolc Math. Notes., 3:1 (2002), 47–58

[59] Phillips R. G., “The equivalence of time-scale decomposition techniques used in the analysis and design of linear systems”, Int. J. Control., 37:6 (1983), 1239–1257

[60] Prljaca N., Gajic Z., “General transformation for block diagonalization of multitime-scale singularly perturbed linear systems”, IEEE Trans. Automat. Control., 53:5 (2008), 1303–1305

[61] Sobolev V. A., “Integral manifolds, stability and decomposition of singularly perturbed systems in Banach space”, Acta Sci. Math., 51:3-4 (1987), 491-500

[62] Shimjith S. R., Tiwari A. P., Bandyopadhyay B., Modeling and Control of a Large Nuclear Reactor: A three-time-scale Approach, Springer, Berlin, 2013

[63] Strygin V. V., Sharuda D. V., “Asymptotic expansion of a solution of stiff systems of delay differential equations”, IFAC Proc. Vol., 33:23 (2000), 287–289

[64] Tsekhan O. B., “Complete controllability conditions for linear singularly perturbed time-invariant systems with multiple delays via Chang-type transformation”, Axioms., 8 (2019), 71, 1–19

[65] Tsekhan O., Pawluszewicz E., “Slow-fast decomposition of singularly perturbed system with delay on time scales”, Proc. ICCC'2019 20th Int. Carpath. Control Conf. (May 26–29, 2019, Krakow-Wieliczka), 2019, 1–5

[66] Tsekhan O., “Approximation of the solution based on the decoupling transformation of linear time-varying singularly perturbed system with delay”, Dynamic Control and Optimization, eds. Tchemisova T. V., Torres D. F. M., Plakhov A. Y., Springer, Cham, 2021, 77–97

[67] Yang X., Zhu J. J., “Chang transformation for decoupling of singularly perturbed linear slowly time-varying systems”, Proc. 51st IEEE Conference on Decision and Control (CDC) (December 10-13, 2012, Maui, Hawaii, USA), 2012, 5755–5760

[68] Yang X., Zhu J. J., “A generalization of Chang transformation for linear time-varying systems”, Proc. 49th IEEE Conf. on Decision and Control (December 15-17, 2010, Atlanta, GA, USA), 2010, 6863–6869