Structure of the essential spectrum and the discrete spectrum of the energy operator of six-electron systems in the Hubbard model. Fourth triplet state
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 31-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we analyze the energy operator of six-electron systems within the framework of the Hubbard model and examine the structure of the essential spectrum and the discrete spectrum of the system in the fourth triplet state. We prove that in the one- and two-dimensional cases, the essential spectrum of the six-electron fourth triplet state operator is the union of seven segments, whereas the discrete spectrum contains at most one eigenvalue. In the three-dimensional case, the following situations can occur: (a) the essential spectrum of the operator is the union of seven segments and the discrete spectrum contains at most one eigenvalue; (b) the essential spectrum is the union of four segments and the discrete spectrum is empty; (c) the essential spectrum is the union of two segments and the discrete spectrum is empty; (d) the essential spectrum consists of a single segment and the discrete spectrum is empty. We found conditions under which each of these situations occurs.
Keywords: Hubbard model, six-electron system, triplet state, essential spectrum, discrete spectra
@article{INTO_2024_236_a3,
     author = {S. M. Tashpulatov},
     title = {Structure of the essential spectrum and the discrete spectrum of the energy operator of six-electron systems in the {Hubbard} model. {Fourth} triplet state},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {31--48},
     publisher = {mathdoc},
     volume = {236},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_236_a3/}
}
TY  - JOUR
AU  - S. M. Tashpulatov
TI  - Structure of the essential spectrum and the discrete spectrum of the energy operator of six-electron systems in the Hubbard model. Fourth triplet state
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 31
EP  - 48
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_236_a3/
LA  - ru
ID  - INTO_2024_236_a3
ER  - 
%0 Journal Article
%A S. M. Tashpulatov
%T Structure of the essential spectrum and the discrete spectrum of the energy operator of six-electron systems in the Hubbard model. Fourth triplet state
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 31-48
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_236_a3/
%G ru
%F INTO_2024_236_a3
S. M. Tashpulatov. Structure of the essential spectrum and the discrete spectrum of the energy operator of six-electron systems in the Hubbard model. Fourth triplet state. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 31-48. http://geodesic.mathdoc.fr/item/INTO_2024_236_a3/

[1] Valkov V. V., Ovchinnikov S. G., Petrakovskii O. G., “Spektr vozbuzhdenii dvukhmagnonnykh sistem v legkoosnom kvazimernom ferromagnetike”, Fizika tverdogo tela., 30 (1988), 3044–3047

[2] Izyumov Yu. A., “Model Khabbarda v rezhime silnykh korrelyatsii”, Usp. fiz. nauk., 165:4 (1995), 403–427

[3] Izyumov Yu. A., Chaschin N. I., Alekseev D. S., Teoriya silno korrelirovannykh sistem. Metod proizvodyaschego funktsionala, M.-Izhevsk, 2006

[4] Karpenko B. V., Dyakin V. V., Budrina G. L., “Dvukhelektronnye sistemy v modeli Khabbarda”, Fizika metallov i metallovedenie., 61:4 (1986), 702–706

[5] Ovchinnikov S. G., Shneider E. I., “Spektralnye funktsii modeli Khabbarda v sluchae polovinnogo zapolneniya”, Fizika tverdogo tela., 46:8 (2004), 1428–1432

[6] Tashpulatov S. M., “O spektralnykh svoistvakh trekhelektronnykh sistem v modeli Khabbarda”, Teor. mat. fiz., 179:3 (2014), 387–405

[7] Tashpulatov S. M., “Struktura suschestvennogo spektra i diskretnyi spektr operatora energii shestielektronnykh sistem v modeli Khabbarda. Vtoroe singletnoe sostoyanie”, Tr. In-ta mat. mekh. UrO RAN., 29:3 (2023), 210–230

[8] Anderson P. W., “Localized magnetic states in metals”, Phys. Rev., 124 (1961), 41–53

[9] Arovas D. P., Berg E., Kivelson S., Raghy S., “The Hubbard model”, Ann. Rev. Condens. Matter Phys., 13 (2022), 239–274

[10] Gutzwiller M. C., “Effect of correlation on the ferromagnetism of transition metals”, Phys. Rev. Lett., 10 (1963), 159–162

[11] Hubbard J., “Electron correlations in narrow energy bands”, Proc. Roy. Soc. A., 276 (1963), 238–257

[12] Ichinose T., “Spectral properties of tensor products of linear pperators. I”, Trans. Am. Math. Soc., 235 (1978), 75–113

[13] Ichinose T., “Spectral properties of tensor products of linear operators. II. The approximate point spectrum and Kato essential spectrum”, Trans. Am. Math. Soc., 237 (1978), 223–254

[14] Ichinose T., “Tensor products of linear oOperators. Spectral theory”, Banach Center Publications. Vol. 8, Polish Scientific Publishers, Warsaw, 1982, 294–300

[15] Kanamori J., “Electron correlation and ferromagnetism of transition metals”, Progr. Theor. Phys., 30 (1963), 275–289

[16] Reed M., Simon B., Methods of Modern Mathematical Physics. Vol 1. Functional Analysis, Academic Press, New York, 1972

[17] Reed M., Simon B., Methods of Modern Mathematical Physics. Vol 4. Operator Analysis, Academic Press, New York, 1982

[18] Tashpulatov S. M., “Spectra of the energy operator of four-electron systems in the triplete state in the Hubbard model”, J. Phys. Conf. Ser., 697 (2016), 012025

[19] Tashpulatov S. M., “The structure of essential spectra and discrete spectrum of four-electron systems in the Hubbard model in a singlet state”, Lobachevskii J. Math., 38:3 (2017), 530–541

[20] Tashpulatov S. M., “Structure of essential spectrum and discrete spectra of the energy operator of five-electron systems in the Hubbard model-doublet state”, Operator Theory and Differential Equations, eds. Kusraev A. G., Totieva Z. D., Birkhäuser, cham, 2021, 275–-301

[21] Tashpulatov S. M., “The structure of essential spectra and discrete spectrum of the energy operator of five-electron systems in the Hubbard model. Fifth doublet state”, Bull. Inst. Math., 5 (2018), 43–52

[22] Tashpulatov S. M., “Structure of the essential and discrete spectra of the energy operator of five-electron systems in the Hubbard model. Third and Fourth doublet states”, J. Appl. Math. Phys., 8:12 (2020), 2886–2918

[23] Tashpulatov S. M., “Structure of the essential and discrete spectra of the energy operator of five-electron systems in the Hubbard model. Sextet and quartet states”, Am. Rev. Math. Stat., 9 (2021), 12–40

[24] Tashpulatov S. M., “Structure of the essential and discrete spectra of the energy operator of five-electron systems in the Hubbard model. Fourth quartet state”, Far Eastern Math. J., 23:1 (2023), 112–133