A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 22-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, based on methods of the Bochner technique, which is an important part of the geometric analysis, we establish conditions under which minimal and stable minimal submanifolds in Riemannian manifolds are characterized as totally geodesic submanifolds.
Keywords:
Euclidean space, Riemannian manifold, rigidity theorem
Mots-clés : minimal hypersurface, stable hypersurface
Mots-clés : minimal hypersurface, stable hypersurface
@article{INTO_2024_236_a2,
author = {S. E. Stepanov and I. I. Tsyganok},
title = {A contribution of the generalized {Bochner} technique to the geometry of complete minimal submanifolds},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {22--30},
publisher = {mathdoc},
volume = {236},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2024_236_a2/}
}
TY - JOUR AU - S. E. Stepanov AU - I. I. Tsyganok TI - A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 22 EP - 30 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_236_a2/ LA - ru ID - INTO_2024_236_a2 ER -
%0 Journal Article %A S. E. Stepanov %A I. I. Tsyganok %T A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 22-30 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_236_a2/ %G ru %F INTO_2024_236_a2
S. E. Stepanov; I. I. Tsyganok. A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 22-30. http://geodesic.mathdoc.fr/item/INTO_2024_236_a2/