A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 22-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, based on methods of the Bochner technique, which is an important part of the geometric analysis, we establish conditions under which minimal and stable minimal submanifolds in Riemannian manifolds are characterized as totally geodesic submanifolds.
Keywords: Euclidean space, Riemannian manifold, rigidity theorem
Mots-clés : minimal hypersurface, stable hypersurface
@article{INTO_2024_236_a2,
     author = {S. E. Stepanov and I. I. Tsyganok},
     title = {A contribution of the generalized {Bochner} technique to the geometry of complete minimal submanifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {22--30},
     publisher = {mathdoc},
     volume = {236},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_236_a2/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. I. Tsyganok
TI  - A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 22
EP  - 30
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_236_a2/
LA  - ru
ID  - INTO_2024_236_a2
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. I. Tsyganok
%T A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 22-30
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_236_a2/
%G ru
%F INTO_2024_236_a2
S. E. Stepanov; I. I. Tsyganok. A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 2, Tome 236 (2024), pp. 22-30. http://geodesic.mathdoc.fr/item/INTO_2024_236_a2/

[1] Grigoryan A. A., “Stokhasticheski polnye mnogoobraziya i summiruemye garmonicheskie funktsii”, Izv. AN SSSR. Ser. mat., 52:5 (1988), 1102–1108

[2] Stepanov S. E., Tsyganok I. I., “Potochechnoe ortogonalnoe rasscheplenie prostranstva TT-tenzorov”, Differ. geom. mnogoobr. figur., 54:2 (2023), 45–53

[3] Besse A., Einstein Manifolds, Springer, Berlin, 1987

[4] Carlotto A., “The general relativistic constraint equations”, Living Rev. Relativ., 24 (2021), 2

[5] do Carmo M. P., Chern S. S., Kobayashi S., “Minimal submanifolds of a sphere with second fundamental form of constant length”, Functional Analysis and Related Fields, ed. Browder F. E., Springer-Verlag, Berlin–Heidelberg–New York, 1970, 59–75

[6] Catino G., Mastrolia P., Roncoroni A., “Two rigidity results for stable minimal hypersurfaces”, Geom. Funct. Anal., 34 (2024), 1–18

[7] Chen B.-Y., “Riemannian submanifolds”, Handbook of Differential Geometry. Vol. 1, eds. Dillen F. J. E., Verstraelen L. C. A., North Holland, Amsterdam, 2000, 187–418

[8] Cheng S. Y., Yau S.-T., “Differential equations on Riemannian manifolds and their geometric applications”, Commun. Pure Appl. Math., 28:3 (1975), 333–354

[9] Eisenhart L. P., “Symmetric tensor of the second order whose first covariant derivatives are zero”, Trans. Am. Math. Soc., 25:2 (1923), 297–306

[10] Fu H.-P., Xu G.-B., Tao Y.-Q., “Some remarks on Riemannian manifolds with parallel Cotton tensor”, Kodai Math. J., 42:1 (2019), 64–74

[11] Grigor'yan A., “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Am. Math. Soc., 36:2 (1999), 135–249

[12] Li P., Wang J., “Stable minimal hypersurfaces in a non-negatively curved manifold”, J. Reine Angew. Math., 566 (2004), 215–230

[13] Mikeš J., Stepanov S., “What is the Bochner technique and where is it applied”, Lobachevskii J. Math., 43:4 (2022), 709–719

[14] Petersen P., Riemannian Geometry, Springer, Cham, 2016

[15] Pierzchalski A., “Gradients: The ellipticity and the elliptic boundary conditions — a jigsaw puzzle”, Folia Math., 19:1 (2017), 65–83

[16] Pigola S., Rigoli M., Setti A. G., Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Birkhäuser, Basel–Boston–Berlin, 2008

[17] Shandra I. G., Stepanov S. E., Mikeš J., “On higher-order Codazzi tensors on complete Riemannian manifolds”, Ann. Glob. Anal. Geom., 56 (2019), 429–442

[18] Simons J., “Minimal varieties in Riemannian manifolds”, Ann. Math., 88:1 (1968), 62–105

[19] Yau S.-T., “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25:7 (1976), 659–670

[20] Yau S.-T., “Erratum: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 31:4 (1982), 607–607