Weingarten equations for surfaces on Helmholtz-type groups
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 68-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study surfaces on three-dimensional Helmholtz-type Lie groups that define the actions of groups of motions of Helmholtz geometries, which are geometries of local maximal mobility. In this paper, we present left-invariant metrics and Levi-Civita connections for these Lie groups, which were found earlier. For surfaces of Helmholtz-type Lie groups, we calculate the spinors that generate them, which satisfy the Dirac and Weingarten equations. We also derive compatibility conditions for the Weingarten equations.
Mots-clés : Lie group, surface on a Lie group, Dirac equation, Weingarten equation
Keywords: Codazzi equation
@article{INTO_2024_235_a5,
     author = {V. A. Kyrov},
     title = {Weingarten equations for surfaces on {Helmholtz-type} groups},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {68--77},
     publisher = {mathdoc},
     volume = {235},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a5/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Weingarten equations for surfaces on Helmholtz-type groups
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 68
EP  - 77
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_235_a5/
LA  - ru
ID  - INTO_2024_235_a5
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Weingarten equations for surfaces on Helmholtz-type groups
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 68-77
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_235_a5/
%G ru
%F INTO_2024_235_a5
V. A. Kyrov. Weingarten equations for surfaces on Helmholtz-type groups. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 68-77. http://geodesic.mathdoc.fr/item/INTO_2024_235_a5/

[1] Berdinskii D. A., Taimanov I. A., “Poverkhnosti v trekhmernykh gruppakh Li”, Sib. mat. zh., 46:6 (2005), 1248–1264 | MR | Zbl

[2] Bogdanova R. A., “Gruppy dvizhenii dvumernykh gelmgoltsevykh geometrii kak reshenie funktsionalnogo uravneniya”, Sib. zh. industr. mat., 12:46 (2009), 12–22 | Zbl

[3] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980

[4] Kyrov V. A., “Gelmgoltsevy prostranstva razmernosti dva”, Sib. mat. zh., 46:6 (2005), 1341–1359 | MR | Zbl

[5] Kyrov V. A., “Levoinvariantnye metriki nekotorykh trekhmernykh grupp Li”, Mat. zametki SVFU., 30:4 (2023), 24–36 | DOI | MR

[6] Mikhailichenko G. G., Matematicheskie osnovy i rezultaty teorii fizicheskikh struktur, Izd-vo Gorno-Altaisk. gos. un-ta, Gorno-Altaisk, 2016

[7] Taimanov I. A., “Operatory Diraka i konformnye invarianty torov v trekhmernom prostranstve”, Tr. MIAN., 204 (2004), 249–280

[8] Scott P., “The geometries of 3-manifolds”, Bull. London Math. Soc., 15:5 (1982), 401–487 | DOI | MR

[9] Thurston W. P., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Am. Math. Soc, 6:3 (1982), 357–381 | DOI | MR