Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 40-56

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear biwave equation given in the first quadrant, we consider a mixed problem in which the Cauchy conditions are specified on the spatial half-line, and the Dirichlet and Neumann conditions are specified on the time half-line. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of a certain integro-differential equations. By the method of continuation with respect to a parameter and a priori estimates, the solvability of these equations, the dependence on the initial data, and the smoothness of solutions are examined. For the problem considered, the uniqueness of the solution is proved and the conditions of the existence of classical solution are established. If the matching conditions are not met, then a problem with conjugation conditions is constructed, and if the data is not sufficiently smooth, then a mild solution is constructed.
Keywords: classical solution, mixed problem, matching conditions, method of characteristics, nonlinear biwave equation
@article{INTO_2024_235_a3,
     author = {V. I. Korzyuk and J. V. Rudzko},
     title = {Classical solution of a~mixed problem with the {Dirichlet} and {Neumann} conditions for a nonlinear biwave equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {40--56},
     publisher = {mathdoc},
     volume = {235},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - J. V. Rudzko
TI  - Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 40
EP  - 56
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/
LA  - ru
ID  - INTO_2024_235_a3
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A J. V. Rudzko
%T Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 40-56
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/
%G ru
%F INTO_2024_235_a3
V. I. Korzyuk; J. V. Rudzko. Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 40-56. http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/