Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 40-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear biwave equation given in the first quadrant, we consider a mixed problem in which the Cauchy conditions are specified on the spatial half-line, and the Dirichlet and Neumann conditions are specified on the time half-line. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of a certain integro-differential equations. By the method of continuation with respect to a parameter and a priori estimates, the solvability of these equations, the dependence on the initial data, and the smoothness of solutions are examined. For the problem considered, the uniqueness of the solution is proved and the conditions of the existence of classical solution are established. If the matching conditions are not met, then a problem with conjugation conditions is constructed, and if the data is not sufficiently smooth, then a mild solution is constructed.
Keywords: classical solution, mixed problem, matching conditions, method of characteristics, nonlinear biwave equation
@article{INTO_2024_235_a3,
     author = {V. I. Korzyuk and J. V. Rudzko},
     title = {Classical solution of a~mixed problem with the {Dirichlet} and {Neumann} conditions for a nonlinear biwave equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {40--56},
     publisher = {mathdoc},
     volume = {235},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - J. V. Rudzko
TI  - Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 40
EP  - 56
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/
LA  - ru
ID  - INTO_2024_235_a3
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A J. V. Rudzko
%T Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 40-56
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/
%G ru
%F INTO_2024_235_a3
V. I. Korzyuk; J. V. Rudzko. Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 40-56. http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/

[1] Bogatov A. V., Gilev A. V., Pulkina L. S., “Zadacha s nelokalnym usloviem dlya uravneniya chetvertogo poryadka s kratnymi kharakteristikami”, Vestn. ross. un-tov. Mat., 27:139 (2022), 214–230 | Zbl

[2] Gaiduk S. I., Kuleshov A. A., “Ob odnoi smeshannoi zadache iz teorii kolebanii balok”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk., 2009, no. 1, 47–51 | MR

[3] Gilev A. V., Kechina O. M., Pulkina L. S., “Kharakteristicheskaya zadacha dlya uravneniya chetvertogo poryadka s dominiruyuschei proizvodnoi”, Vestn. SamGU. Estestvennonauch. ser., 27:3 (2021), 14–21 | MR | Zbl

[4] Korzyuk V. I., Vin N. V., “Klassicheskie resheniya smeshannykh zadach dlya odnomernogo bivolnovogo uravneniya”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk., 2016, no. 1, 69–79

[5] Korzyuk V. I., Vin N. V., “Reshenie zadachi dlya nestrogo giperbolicheskogo uravneniya chetvertogo poryadka c dvukratnymi kharakteristikami”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk., 2017, no. 1, 38–52 | MR

[6] Korzyuk V. I., Konopelko O. A., Cheb E. S., “Granichnye zadachi dlya uravnenii chetvertogo poryadka giperbolicheskogo i sostavnogo tipov”, Sovr. mat. Fundam. napr., 36 (2010), 87–111 | Zbl

[7] Korzyuk V. I., Kozlovskaya I. S., Kozlov A. I., “Zadacha Koshi dlya nestrogo giperbolicheskogo uravneniya na poluploskosti s postoyannymi koeffitsientami”, Differ. uravn., 51:6 (2015), 714–725 | DOI | MR | Zbl

[8] Korzyuk V. I., Mandrik A. A., “Granichnye zadachi dlya nestrogo giperbolicheskogo uravneniya tretego poryadka”, Differ. uravn., 52:2 (2016), 209–219 | DOI | MR | Zbl

[9] Korzyuk V. I., Mandrik A. A., “Pervaya smeshannaya zadacha dlya nestrogo giperbolicheskogo uravneniya tretego poryadka v ogranichennoi oblasti”, Differ. uravn., 52:6 (2016), 788–802 | DOI | Zbl

[10] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe i slaboe reshenie pervoi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 43 (2023), 48–63 | MR | Zbl

[11] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe reshenie vtoroi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differ. uravn., 59:9 (2023), 1222–1239 | DOI | Zbl

[12] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe reshenie pervoi smeshannoi zadachi v krivolineinom kvadrante dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differ. uravn., 59:8 (2023), 1070–1083 | DOI | Zbl

[13] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differ. uravn., 58:2 (2022), 174–184 | Zbl

[14] Korzyuk V. I., Stolyarchuk I. I., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka v krivolineinoi polupolose s peremennymi koeffitsientami”, Differ. uravn., 53:1 (2017), 77–88 | DOI | MR | Zbl

[15] Korzyuk V. I., Cheb E. S., “Smeshannye zadachi dlya bivolnovogo uravneniya”, Vestn. BGU. Ser. 1. Fiz. Mat. Inform., 2005, no. 1, 63–68

[16] Korzyuk V. I., Cheb E. S., Tkhu L. T., “Reshenie pervoi smeshannoi zadachi dlya nestrogo bivolnovogo uravneniya”, Dokl. NAN Belarusi., 55:4 (2011), 5–13 | MR

[17] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, Moskva, 1978 | MR

[18] Trenogin V. A., “Globalnaya obratimost nelineinykh operatorov i metod prodolzheniya po parametru”, Dokl. RAN., 350:4 (1996), 455–457 | MR | Zbl

[19] Buryachenko K. O., “Solvability of inhomogeneous boundary-value problems for fourth-order differential equations”, Ukr. Math. J., 63:8 (2012), 1165–1175 | DOI | MR | Zbl

[20] Fushchych W. I., Roman O. V., Zhdanov R. Z., “Symmetry reduction and some exact solutions of nonlinear biwave equations”, Repts. Math. Phys., 37:2 (1996), 267–281 | DOI | MR | Zbl

[21] Harrevelt S. D., Eigenvalue Analysis of the Timoshenko Beam Theory with a Damped Boundary Condition, Tech. Univ. Delft, Delft, 2012

[22] Kharibegashvili S., Midodashvili B., “On one boundary-value problem for a nonlinear equation with the iterated wave operator in the principal part”, Georgian Math. J., 15:3 (2008), 541–554 | DOI | MR | Zbl

[23] Korzyuk V. I., Rudzko J. V., Cauchy Problem for a Semilinear Nonstrictly Hyperbolic Equation on a Half-Plane in the Case of a Single Characteristic, ResearchGate, 2023 | MR

[24] Ortner N., Wagner P., “Solution of the initial-boundary-value problem for the simply supported semi-infinite Timoshenko beam”, J. Elast., 42 (1996), 217–241 | DOI | MR | Zbl

[25] Sitnik S. M., Shakhobiddin T. K., “Solution of the Goursat problem for a fourth-order hyperbolic equation with singular coefficients by the method of transmutation operators”, Mathematics., 11:4 (2023), 951 | DOI

[26] Trenogin V. A, “Invertibility of nonlinear operators and parameter continuation method”, Spectral and Scattering Theory, ed. Ramm A. G., Springer, Boston, 1998, 189–197 | DOI | MR

[27] Utkina E. A., “Dirichlet problem for a fourth-order equation”, Differ. Equations., 47:4 (2011), 599–603 | DOI | MR