Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_235_a3, author = {V. I. Korzyuk and J. V. Rudzko}, title = {Classical solution of a~mixed problem with the {Dirichlet} and {Neumann} conditions for a nonlinear biwave equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {40--56}, publisher = {mathdoc}, volume = {235}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/} }
TY - JOUR AU - V. I. Korzyuk AU - J. V. Rudzko TI - Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 40 EP - 56 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/ LA - ru ID - INTO_2024_235_a3 ER -
%0 Journal Article %A V. I. Korzyuk %A J. V. Rudzko %T Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 40-56 %V 235 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/ %G ru %F INTO_2024_235_a3
V. I. Korzyuk; J. V. Rudzko. Classical solution of a~mixed problem with the Dirichlet and Neumann conditions for a nonlinear biwave equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 40-56. http://geodesic.mathdoc.fr/item/INTO_2024_235_a3/
[1] Bogatov A. V., Gilev A. V., Pulkina L. S., “Zadacha s nelokalnym usloviem dlya uravneniya chetvertogo poryadka s kratnymi kharakteristikami”, Vestn. ross. un-tov. Mat., 27:139 (2022), 214–230 | Zbl
[2] Gaiduk S. I., Kuleshov A. A., “Ob odnoi smeshannoi zadache iz teorii kolebanii balok”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk., 2009, no. 1, 47–51 | MR
[3] Gilev A. V., Kechina O. M., Pulkina L. S., “Kharakteristicheskaya zadacha dlya uravneniya chetvertogo poryadka s dominiruyuschei proizvodnoi”, Vestn. SamGU. Estestvennonauch. ser., 27:3 (2021), 14–21 | MR | Zbl
[4] Korzyuk V. I., Vin N. V., “Klassicheskie resheniya smeshannykh zadach dlya odnomernogo bivolnovogo uravneniya”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk., 2016, no. 1, 69–79
[5] Korzyuk V. I., Vin N. V., “Reshenie zadachi dlya nestrogo giperbolicheskogo uravneniya chetvertogo poryadka c dvukratnymi kharakteristikami”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk., 2017, no. 1, 38–52 | MR
[6] Korzyuk V. I., Konopelko O. A., Cheb E. S., “Granichnye zadachi dlya uravnenii chetvertogo poryadka giperbolicheskogo i sostavnogo tipov”, Sovr. mat. Fundam. napr., 36 (2010), 87–111 | Zbl
[7] Korzyuk V. I., Kozlovskaya I. S., Kozlov A. I., “Zadacha Koshi dlya nestrogo giperbolicheskogo uravneniya na poluploskosti s postoyannymi koeffitsientami”, Differ. uravn., 51:6 (2015), 714–725 | DOI | MR | Zbl
[8] Korzyuk V. I., Mandrik A. A., “Granichnye zadachi dlya nestrogo giperbolicheskogo uravneniya tretego poryadka”, Differ. uravn., 52:2 (2016), 209–219 | DOI | MR | Zbl
[9] Korzyuk V. I., Mandrik A. A., “Pervaya smeshannaya zadacha dlya nestrogo giperbolicheskogo uravneniya tretego poryadka v ogranichennoi oblasti”, Differ. uravn., 52:6 (2016), 788–802 | DOI | Zbl
[10] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe i slaboe reshenie pervoi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 43 (2023), 48–63 | MR | Zbl
[11] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe reshenie vtoroi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differ. uravn., 59:9 (2023), 1222–1239 | DOI | Zbl
[12] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe reshenie pervoi smeshannoi zadachi v krivolineinom kvadrante dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differ. uravn., 59:8 (2023), 1070–1083 | DOI | Zbl
[13] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differ. uravn., 58:2 (2022), 174–184 | Zbl
[14] Korzyuk V. I., Stolyarchuk I. I., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka v krivolineinoi polupolose s peremennymi koeffitsientami”, Differ. uravn., 53:1 (2017), 77–88 | DOI | MR | Zbl
[15] Korzyuk V. I., Cheb E. S., “Smeshannye zadachi dlya bivolnovogo uravneniya”, Vestn. BGU. Ser. 1. Fiz. Mat. Inform., 2005, no. 1, 63–68
[16] Korzyuk V. I., Cheb E. S., Tkhu L. T., “Reshenie pervoi smeshannoi zadachi dlya nestrogo bivolnovogo uravneniya”, Dokl. NAN Belarusi., 55:4 (2011), 5–13 | MR
[17] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, Moskva, 1978 | MR
[18] Trenogin V. A., “Globalnaya obratimost nelineinykh operatorov i metod prodolzheniya po parametru”, Dokl. RAN., 350:4 (1996), 455–457 | MR | Zbl
[19] Buryachenko K. O., “Solvability of inhomogeneous boundary-value problems for fourth-order differential equations”, Ukr. Math. J., 63:8 (2012), 1165–1175 | DOI | MR | Zbl
[20] Fushchych W. I., Roman O. V., Zhdanov R. Z., “Symmetry reduction and some exact solutions of nonlinear biwave equations”, Repts. Math. Phys., 37:2 (1996), 267–281 | DOI | MR | Zbl
[21] Harrevelt S. D., Eigenvalue Analysis of the Timoshenko Beam Theory with a Damped Boundary Condition, Tech. Univ. Delft, Delft, 2012
[22] Kharibegashvili S., Midodashvili B., “On one boundary-value problem for a nonlinear equation with the iterated wave operator in the principal part”, Georgian Math. J., 15:3 (2008), 541–554 | DOI | MR | Zbl
[23] Korzyuk V. I., Rudzko J. V., Cauchy Problem for a Semilinear Nonstrictly Hyperbolic Equation on a Half-Plane in the Case of a Single Characteristic, ResearchGate, 2023 | MR
[24] Ortner N., Wagner P., “Solution of the initial-boundary-value problem for the simply supported semi-infinite Timoshenko beam”, J. Elast., 42 (1996), 217–241 | DOI | MR | Zbl
[25] Sitnik S. M., Shakhobiddin T. K., “Solution of the Goursat problem for a fourth-order hyperbolic equation with singular coefficients by the method of transmutation operators”, Mathematics., 11:4 (2023), 951 | DOI
[26] Trenogin V. A, “Invertibility of nonlinear operators and parameter continuation method”, Spectral and Scattering Theory, ed. Ramm A. G., Springer, Boston, 1998, 189–197 | DOI | MR
[27] Utkina E. A., “Dirichlet problem for a fourth-order equation”, Differ. Equations., 47:4 (2011), 599–603 | DOI | MR