Composition of numbers with constraints and the hierarchical structure of planar sections of Pascal's pyramid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 67-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine compositions of natural numbers with constraints on natural parts and their relationship with hierarchical combinatorial objects. We derive a formula for calculating the number of such compositions with three constraints based on the sums of elements of planar sections of Pascal's pyramid. Also, we obtain recurrence relations and generating functions for the numbers of compositions and examine some important special cases for well-known combinatorial numbers.
Keywords: composition of number, hierarchical structure, recurrence relation, generating function, Tribonacci numbers, Fibonacci numbers
Mots-clés : Pascal's pyramid, Pascal's triangle
@article{INTO_2024_234_a8,
     author = {O. V. Kuz'min and M. V. Strihar},
     title = {Composition of numbers with constraints and the hierarchical structure of planar sections of {Pascal's} pyramid},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {67--74},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a8/}
}
TY  - JOUR
AU  - O. V. Kuz'min
AU  - M. V. Strihar
TI  - Composition of numbers with constraints and the hierarchical structure of planar sections of Pascal's pyramid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 67
EP  - 74
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a8/
LA  - ru
ID  - INTO_2024_234_a8
ER  - 
%0 Journal Article
%A O. V. Kuz'min
%A M. V. Strihar
%T Composition of numbers with constraints and the hierarchical structure of planar sections of Pascal's pyramid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 67-74
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a8/
%G ru
%F INTO_2024_234_a8
O. V. Kuz'min; M. V. Strihar. Composition of numbers with constraints and the hierarchical structure of planar sections of Pascal's pyramid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 67-74. http://geodesic.mathdoc.fr/item/INTO_2024_234_a8/

[1] Borodin A. V., Biryukov E. S., “O prakticheskoi realizatsii nekotorykh algoritmov, svyazannykh s problemoi kompozitsii chisel”, Kibern. program., 2015, no. 1, 27–45

[2] Kruchinin V. V., “Algoritmy generatsii i numeratsii kompozitsii i razbienii naturalnogo chisla $n$”, Dokl. Tomsk. gos. un-ta sist. upravl. radioelektr., 17:3 (2008), 113–119

[3] Kuzmin O. V., Obobschennye piramidy Paskalya i ikh prilozheniya, Nauka, Novosibirsk, 2000 | MR

[4] Kuzmin O. V., Seregina M. V., “Ploskie secheniya obobschennoi piramidy Paskalya i ikh interpretatsii”, Diskr. mat., 22:3 (2010), 83–93 | DOI | MR | Zbl

[5] Endryus G., Teoriya razbienii, Nauka, Moskva, 1982