Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_234_a17, author = {Yu. A. Markov and M. A. Markova and N. Yu. Markov}, title = {On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a {non-Abelian} plasma}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {159--169}, publisher = {mathdoc}, volume = {234}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/} }
TY - JOUR AU - Yu. A. Markov AU - M. A. Markova AU - N. Yu. Markov TI - On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 159 EP - 169 VL - 234 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/ LA - ru ID - INTO_2024_234_a17 ER -
%0 Journal Article %A Yu. A. Markov %A M. A. Markova %A N. Yu. Markov %T On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 159-169 %V 234 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/ %G ru %F INTO_2024_234_a17
Yu. A. Markov; M. A. Markova; N. Yu. Markov. On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 159-169. http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/
[1] Dubinov A. E., Dubinova I. D., Saikov S. K., $W$-Funktsiya Lamberta i ee primenenie v matematicheskikh zadachakh fiziki, RFYaTs-VNIIEF, Sarov, 2006
[2] Zaitsev V. F., Polyanin A. D., Spravochnik po nelineinym differentsialnym uravneniyam: Prilozheniya v mekhanike, tochnye resheniya, Nauka, M., 1993
[3] Markov Yu. A., Markova M. A., Markov N. Yu., “Gamiltonov formalizm dlya zhestkikh i myagkikh vozbuzhdenii v plazme s neabelevym vzaimodeistviem”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 234 (2024), 143–158
[4] Blaizot J.-P., Iancu E., “The quark-gluon plasma: collective dynamics and hard thermal loops”, Phys. Rep., 359 (2002), 355–528 | DOI | Zbl
[5] Corless R. M., Gonnet G. H., Hare D .E. G. et al., “On the Lambert $W$ function”, Adv. Comput. Math., 5 (1996), 329–359 | DOI | MR | Zbl
[6] Corless R. M., Jeffrey D. J., Knuth D. E., “A sequence series for the Lambert $W$ function”, Proc. Int. Symp. on Symbolic and Algebraic Computation (ISSAC, 1997), New York, 1997, 197–204 | DOI | MR | Zbl
[7] Ghiglieri J., Kurkela A., Strickland M., Vuorinen A., “Perturbative thermal QCD: Formalism and applications”, Phys. Rep., 880 (2020), 1–73 | DOI | MR | Zbl
[8] Kalugin G. A., Jeffrey D. J., Corless R. M., Stieltjes, Poisson and other integral representations for functions of Lambert $W$, arXiv: math.CV/:1103.5640v1
[9] Markov Yu. A., Markova M. A., “Nonlinear plasmon damping in the quark-gluon plasma”, J. Phys. G: Nucl. Part. Phys., 26 (2000), 1581–1619 | DOI
[10] Markov Yu. A., Markova M. A., “Nonlinear Landau damping of a plasmino in the quark-gluon plasma”, Phys. Rev. D., 64 (2001), 105009 | DOI