On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 159-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present and discuss a self-consistent system of kinetic equations of the Boltzmann type, which takes into account the time evolution of soft non-Abelian plasma excitations and the mean value of the color charge in the interaction of a high-energy color-charged particle with a plasma. Based on these equations, we examine a model problem of interaction of two infinitely narrow wave packets and obtain a system of first-order nonlinear ordinary differential equations, which governs the dynamics of interacting the colorless $N^{l}_{\mathbf \kappa}$ and color $W^{l}_{\mathbf \kappa}$ components of the density of the number collective bosonic excitations. Due to the autonomy of the right-hand sides, we reduce this system to a single nonlinear Abel differential equation of the second kind. Finally, we show that at a certain ratio between the constants involved in this nonlinear equation, one can obtain an exact solution in the parametric form.
Keywords: kinetic equation, non-Abelian plasma, wave packet, Abel equation of the second kind, Lambert function
@article{INTO_2024_234_a17,
     author = {Yu. A. Markov and M. A. Markova and N. Yu. Markov},
     title = {On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a {non-Abelian} plasma},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/}
}
TY  - JOUR
AU  - Yu. A. Markov
AU  - M. A. Markova
AU  - N. Yu. Markov
TI  - On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 159
EP  - 169
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/
LA  - ru
ID  - INTO_2024_234_a17
ER  - 
%0 Journal Article
%A Yu. A. Markov
%A M. A. Markova
%A N. Yu. Markov
%T On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 159-169
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/
%G ru
%F INTO_2024_234_a17
Yu. A. Markov; M. A. Markova; N. Yu. Markov. On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 159-169. http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/

[1] Dubinov A. E., Dubinova I. D., Saikov S. K., $W$-Funktsiya Lamberta i ee primenenie v matematicheskikh zadachakh fiziki, RFYaTs-VNIIEF, Sarov, 2006

[2] Zaitsev V. F., Polyanin A. D., Spravochnik po nelineinym differentsialnym uravneniyam: Prilozheniya v mekhanike, tochnye resheniya, Nauka, M., 1993

[3] Markov Yu. A., Markova M. A., Markov N. Yu., “Gamiltonov formalizm dlya zhestkikh i myagkikh vozbuzhdenii v plazme s neabelevym vzaimodeistviem”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 234 (2024), 143–158

[4] Blaizot J.-P., Iancu E., “The quark-gluon plasma: collective dynamics and hard thermal loops”, Phys. Rep., 359 (2002), 355–528 | DOI | Zbl

[5] Corless R. M., Gonnet G. H., Hare D .E. G. et al., “On the Lambert $W$ function”, Adv. Comput. Math., 5 (1996), 329–359 | DOI | MR | Zbl

[6] Corless R. M., Jeffrey D. J., Knuth D. E., “A sequence series for the Lambert $W$ function”, Proc. Int. Symp. on Symbolic and Algebraic Computation (ISSAC, 1997), New York, 1997, 197–204 | DOI | MR | Zbl

[7] Ghiglieri J., Kurkela A., Strickland M., Vuorinen A., “Perturbative thermal QCD: Formalism and applications”, Phys. Rep., 880 (2020), 1–73 | DOI | MR | Zbl

[8] Kalugin G. A., Jeffrey D. J., Corless R. M., Stieltjes, Poisson and other integral representations for functions of Lambert $W$, arXiv: math.CV/:1103.5640v1

[9] Markov Yu. A., Markova M. A., “Nonlinear plasmon damping in the quark-gluon plasma”, J. Phys. G: Nucl. Part. Phys., 26 (2000), 1581–1619 | DOI

[10] Markov Yu. A., Markova M. A., “Nonlinear Landau damping of a plasmino in the quark-gluon plasma”, Phys. Rev. D., 64 (2001), 105009 | DOI