On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 159-169

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present and discuss a self-consistent system of kinetic equations of the Boltzmann type, which takes into account the time evolution of soft non-Abelian plasma excitations and the mean value of the color charge in the interaction of a high-energy color-charged particle with a plasma. Based on these equations, we examine a model problem of interaction of two infinitely narrow wave packets and obtain a system of first-order nonlinear ordinary differential equations, which governs the dynamics of interacting the colorless $N^{l}_{\mathbf \kappa}$ and color $W^{l}_{\mathbf \kappa}$ components of the density of the number collective bosonic excitations. Due to the autonomy of the right-hand sides, we reduce this system to a single nonlinear Abel differential equation of the second kind. Finally, we show that at a certain ratio between the constants involved in this nonlinear equation, one can obtain an exact solution in the parametric form.
Keywords: kinetic equation, non-Abelian plasma, wave packet, Abel equation of the second kind, Lambert function
@article{INTO_2024_234_a17,
     author = {Yu. A. Markov and M. A. Markova and N. Yu. Markov},
     title = {On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a {non-Abelian} plasma},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/}
}
TY  - JOUR
AU  - Yu. A. Markov
AU  - M. A. Markova
AU  - N. Yu. Markov
TI  - On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 159
EP  - 169
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/
LA  - ru
ID  - INTO_2024_234_a17
ER  - 
%0 Journal Article
%A Yu. A. Markov
%A M. A. Markova
%A N. Yu. Markov
%T On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 159-169
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/
%G ru
%F INTO_2024_234_a17
Yu. A. Markov; M. A. Markova; N. Yu. Markov. On the exact solution of the evolution equations for two interacting narrow wave packets propagating in a non-Abelian plasma. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 159-169. http://geodesic.mathdoc.fr/item/INTO_2024_234_a17/