Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 143-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hamiltonian theory for collective longitudinally polarized gluon excitations (plasmons) interacting with classical high-energy color-charged test particle propagating through a high-temperature gluon plasma is developed. A generalization of the Lie–Poisson bracket to the case of a continuous medium involving bosonic normal field variable $a^{a}_{\boldsymbol{k}}$ and a non-Abelian color charge $Q^{a}$ is performed and the corresponding Hamilton equations are derived. The canonical transformations including simultaneously both bosonic degrees of freedom of the soft collective excitations in the hot gluon plasma and the degree of freedom of a hard test particle associated with its color charge are presented. A complete system of the canonicity conditions for these transformations is obtained. An explicit form of the effective fourth-order Hamiltonian describing the elastic scattering of a plasmon off a hard color particle is found and the self-consistent system of Boltzmann-type kinetic equations taking into account the time evolution of the mean value of the color charge of this particle is obtained.
Keywords: Hamiltonian formalism, canonical transformation, special unitary group, plasmon, kinetic equation, gluon plasma
Mots-clés : Lie–Poisson bracket
@article{INTO_2024_234_a16,
     author = {Yu. A. Markov and M. A. Markova and N. Yu. Markov},
     title = {Hamiltonian formalism for hard and soft excitations in a plasma with a {non-Abelian} interaction},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {143--158},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a16/}
}
TY  - JOUR
AU  - Yu. A. Markov
AU  - M. A. Markova
AU  - N. Yu. Markov
TI  - Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 143
EP  - 158
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a16/
LA  - ru
ID  - INTO_2024_234_a16
ER  - 
%0 Journal Article
%A Yu. A. Markov
%A M. A. Markova
%A N. Yu. Markov
%T Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 143-158
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a16/
%G ru
%F INTO_2024_234_a16
Yu. A. Markov; M. A. Markova; N. Yu. Markov. Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 143-158. http://geodesic.mathdoc.fr/item/INTO_2024_234_a16/

[1] Zakharov V. E., “Gamiltonov formalizm dlya voln v nelineinykh sredakh s dispersiei”, Izv. vuzov. Radiofizika., 17 (1974), 431–45Z | DOI

[2] Zakharov V. E., Kuznetsov E. A., “Gamiltonov formalizm dlya nelineinykh voln”, Usp. fiz. nauk., 167 (1997), 1137–1167 | DOI

[3] Kalashnikov O. K., Klimov V. V., “Polyarizatsionnyi operator v KKhD pri konechnykh temperaturakh i plotnostyakh”, Yad. fiz., 31 (1980), 1357–1371

[4] Markov Yu. A., Markova M. A., Markov N. Yu., Gitman D. M., “Gamiltonov formalizm dlya Boze-vozbuzhdenii v plazme s neabelevym tipom vzaimodeistviem”, ZhETF., 157 (2020), 327–341 | DOI

[5] Balachandran A. P., Salomonson P., Skagerstam B. and Winnberg J., “Classical description of a particle interacting with a non-Abelian gauge field”, Phys. Rev. D., 15 (1977), 2308–2317 | DOI

[6] Blaizot J.-P., Iancu E., “Energy-momentum tensors for the quark-gluon plasma”, Nucl. Phys. B., 421 (1994), 565–592 | DOI

[7] Haber H. E., “Useful relations among the generators in the defining and adjoint representations of $SU(N)$”, SciPost. Phys. Lect. Notes., 21 (2021), 1–11 | DOI

[8] Hakim R., Introduction to relativistic statistical mechanics: classical and quantum, World Scientific, 2011 | MR | Zbl

[9] Linden N., Macfarlane A. J., Van Holten J. W., “Particle motion in a Yang–Mills field: Wong's equations and spin-$\frac{1}{2}$ analogues”, Czech. J. Phys., 45 (1995), 209–215 | DOI | MR

[10] Markov Yu. A., Markova M. A., Markov N. Yu., “Hamiltonian formalism for Fermi excitations in a plasma with a non-Abelian interaction”, Int. J. Mod. Phys. A., 38 (2023), 2350015(77) | DOI | MR

[11] Markov Yu. A., Markova M. A., Vall A.N., “Nonlinear dynamics of soft boson collective excitations in hot QCD plasma II: plasmon–hard-particle scattering and energy losses”, Ann. Phys., 309 (2004), 93–150 | DOI | Zbl

[12] Wong S. K., “Field and particle equations for the classical Yang–Mills field and particles with isotopic spin”, Nuovo Cim. A., 65 (1970), 689–694 | DOI

[13] Zakharov V. E., Musher S. L., Rubenchik A. M., “Hamiltonian approach to the description of nonlinear plasma phenomena”, Phys. Rep., 129 (1985), 285–366 | DOI | MR

[14] Zakharov V. E., L'vov V. S., Falkovich G., Kolmogorov Spectra of Turbulence I. Wave Turbulence, Springer-Verlag, 1992 | MR | Zbl