Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_234_a16, author = {Yu. A. Markov and M. A. Markova and N. Yu. Markov}, title = {Hamiltonian formalism for hard and soft excitations in a plasma with a {non-Abelian} interaction}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {143--158}, publisher = {mathdoc}, volume = {234}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a16/} }
TY - JOUR AU - Yu. A. Markov AU - M. A. Markova AU - N. Yu. Markov TI - Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 143 EP - 158 VL - 234 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_234_a16/ LA - ru ID - INTO_2024_234_a16 ER -
%0 Journal Article %A Yu. A. Markov %A M. A. Markova %A N. Yu. Markov %T Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 143-158 %V 234 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_234_a16/ %G ru %F INTO_2024_234_a16
Yu. A. Markov; M. A. Markova; N. Yu. Markov. Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 143-158. http://geodesic.mathdoc.fr/item/INTO_2024_234_a16/
[1] Zakharov V. E., “Gamiltonov formalizm dlya voln v nelineinykh sredakh s dispersiei”, Izv. vuzov. Radiofizika., 17 (1974), 431–45Z | DOI
[2] Zakharov V. E., Kuznetsov E. A., “Gamiltonov formalizm dlya nelineinykh voln”, Usp. fiz. nauk., 167 (1997), 1137–1167 | DOI
[3] Kalashnikov O. K., Klimov V. V., “Polyarizatsionnyi operator v KKhD pri konechnykh temperaturakh i plotnostyakh”, Yad. fiz., 31 (1980), 1357–1371
[4] Markov Yu. A., Markova M. A., Markov N. Yu., Gitman D. M., “Gamiltonov formalizm dlya Boze-vozbuzhdenii v plazme s neabelevym tipom vzaimodeistviem”, ZhETF., 157 (2020), 327–341 | DOI
[5] Balachandran A. P., Salomonson P., Skagerstam B. and Winnberg J., “Classical description of a particle interacting with a non-Abelian gauge field”, Phys. Rev. D., 15 (1977), 2308–2317 | DOI
[6] Blaizot J.-P., Iancu E., “Energy-momentum tensors for the quark-gluon plasma”, Nucl. Phys. B., 421 (1994), 565–592 | DOI
[7] Haber H. E., “Useful relations among the generators in the defining and adjoint representations of $SU(N)$”, SciPost. Phys. Lect. Notes., 21 (2021), 1–11 | DOI
[8] Hakim R., Introduction to relativistic statistical mechanics: classical and quantum, World Scientific, 2011 | MR | Zbl
[9] Linden N., Macfarlane A. J., Van Holten J. W., “Particle motion in a Yang–Mills field: Wong's equations and spin-$\frac{1}{2}$ analogues”, Czech. J. Phys., 45 (1995), 209–215 | DOI | MR
[10] Markov Yu. A., Markova M. A., Markov N. Yu., “Hamiltonian formalism for Fermi excitations in a plasma with a non-Abelian interaction”, Int. J. Mod. Phys. A., 38 (2023), 2350015(77) | DOI | MR
[11] Markov Yu. A., Markova M. A., Vall A.N., “Nonlinear dynamics of soft boson collective excitations in hot QCD plasma II: plasmon–hard-particle scattering and energy losses”, Ann. Phys., 309 (2004), 93–150 | DOI | Zbl
[12] Wong S. K., “Field and particle equations for the classical Yang–Mills field and particles with isotopic spin”, Nuovo Cim. A., 65 (1970), 689–694 | DOI
[13] Zakharov V. E., Musher S. L., Rubenchik A. M., “Hamiltonian approach to the description of nonlinear plasma phenomena”, Phys. Rep., 129 (1985), 285–366 | DOI | MR
[14] Zakharov V. E., L'vov V. S., Falkovich G., Kolmogorov Spectra of Turbulence I. Wave Turbulence, Springer-Verlag, 1992 | MR | Zbl