Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_234_a10, author = {S. V. Solodusha and Yu. I. Kokonova}, title = {The problem of identifying the input signal of dynamic systems modeled by {Volterra} polynomials}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {83--90}, publisher = {mathdoc}, volume = {234}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a10/} }
TY - JOUR AU - S. V. Solodusha AU - Yu. I. Kokonova TI - The problem of identifying the input signal of dynamic systems modeled by Volterra polynomials JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 83 EP - 90 VL - 234 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_234_a10/ LA - ru ID - INTO_2024_234_a10 ER -
%0 Journal Article %A S. V. Solodusha %A Yu. I. Kokonova %T The problem of identifying the input signal of dynamic systems modeled by Volterra polynomials %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 83-90 %V 234 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_234_a10/ %G ru %F INTO_2024_234_a10
S. V. Solodusha; Yu. I. Kokonova. The problem of identifying the input signal of dynamic systems modeled by Volterra polynomials. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 83-90. http://geodesic.mathdoc.fr/item/INTO_2024_234_a10/
[1] Apartsin A. S., “Polilineinye integralnye uravneniya Volterra I roda: elementy teorii i chislennye metody”, Izv. Irkut. gos. un-ta. Ser. mat., 1:1 (2007), 13–14 | MR
[2] Apartsin A. S., “O skhodimosti chislennykh metodov resheniya bilineinogo uravneniya Volterra I roda”, Zh. vychisl. mat. mat. fiz., 47:8 (2007), 1378–1386 | MR
[3] Apartsin A. S., “Polinomialnye integralnye uravneniya Volterra I roda i funktsiya Lamberta”, Tr. in-ta mat. mekh. UrO RAN., 18:1 (2012), 69–81
[4] Apartsin A. S., Bakushinskii A. B., “Priblizhennoe reshenie integralnykh uravnenii Volterra I roda metodom kvadraturnykh summ”, Differentsialnye i integralnye uravneniya, Irkut. gos. un-t, Irkutsk, 1972, 248–258
[5] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatlit, M., 1959 | MR
[6] Solodusha S. V., Grazhdantseva E. Yu., “Testovoe polinomialnoe uravnenie Volterra I roda v zadache identifikatsii vkhodnykh signalov”, Tr. in-ta mat. mekh. UrO RAN., 27:4 (2021), 161–174 | DOI | MR
[7] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979
[8] Volterra V., A Theory of Functionals, Integral and Integro-Differential Equations, Dover, New York, 1959 | MR | Zbl
[9] Kleiman E. G., “Identification of input signals in dynamical systems”, Automat. Remote Contr., 60:12 (1999), 1675–1685 | MR | Zbl
[10] Linz P., “Product integration method for Volterra integral equations of the first kind”, BIT Numer. Math., 11:3 (1971), 413–421 | DOI | MR | Zbl
[11] Solodusha S. V., “To the numerical solution of one class of systems of the Volterra polynomial equations of the first kind”, Num. Anal. Appl., 11:1 (2018), 89–97 | DOI | MR | Zbl
[12] Solodusha S. V., “Identification of input signals in integral models of one class of nonlinear dynamic systems”, Izv. Irkut. gos. un-ta. Ser. mat., 30 (2019), 73–82 | DOI | MR | Zbl