Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_233_a5, author = {O. I. Reinov}, title = {Trace, determinant and eigenvalues of kernel operators}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {56--74}, publisher = {mathdoc}, volume = {233}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a5/} }
TY - JOUR AU - O. I. Reinov TI - Trace, determinant and eigenvalues of kernel operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 56 EP - 74 VL - 233 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_233_a5/ LA - ru ID - INTO_2024_233_a5 ER -
O. I. Reinov. Trace, determinant and eigenvalues of kernel operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 56-74. http://geodesic.mathdoc.fr/item/INTO_2024_233_a5/
[1] Kadets V. M., “O pryamoi summe normirovannykh prostranstv”, Sib. mat. zh., 32:1 (1991), 186–189 | MR | Zbl
[2] Lidskii V. B., “Nesamosopryazhennye operatory, imeyuschie sled”, Dokl. AN SSSR., 125:3 (1959), 485–487 | Zbl
[3] Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, v. 1, Am. Math. Soc., Providence, Rhose Island, 2000 | MR | Zbl
[4] Gohberg I., Goldberg S., Krupnik N., Traces and Determinants of Linear Operators, Birkhäuser, Basel–Boston–Berlin, 2000 | MR | Zbl
[5] Grothendieck A., Produits tensoriels topologiques et éspaces nucléaires, 16 (1955), Mem. Am. Math. Soc. | MR | Zbl
[6] Hinrichs A., Pietsch A., “$p$-Nuclear operators in the sense of Grothendieck”, Math. Nachr., 283:2 (2010), 232–261 | DOI | MR | Zbl
[7] Kalton N. J., Quasi-Banach Spaces. Handbook of the Geometry of Banach Spaces. Vol. 2, North-Holland, Amsterdam
[8] König H., “On the eigenvalue spectrum of certain operator ideals”, Coll. Math., 44 (1981), 15–28 | MR
[9] König H., Eigenvalue Distribution of Compact Operators, Birkhäuser, Boston, 1986 | MR | Zbl
[10] Köthe G., Topological Vector Spaces. I, Springer, Berlin–Heidelberg–New York, 1969 | Zbl
[11] Lapreste J. T., “Opérateurs sommants et factorisations à travers les espaces $L_p$”, Stud. Math., 57 (1976), 47–83 | DOI | MR | Zbl
[12] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. Sequence Spaces. Vol. 1, Springer, Berlin–Heidelberg–New York, 1977 | MR
[13] Pietsch A., Operator Ideals, North-Holland, Berlin, 1978 | MR
[14] Pietsch A., Eigenvalues and $s$-Numbers, Cambridge Univ. Press, New York, 1987 | MR | Zbl
[15] Reinov O., Approximation properties associated with quasi-normed operator ideals of $(r,p,q)$-nuclear operators, http://www.mathsoc.spb.ru/preprint/2017/17-08.pdf
[16] Reinov O., Latif Q., “Grothendieck–Lidskiǐ theorem for subspaces of $L_p$-spaces”, Math. Nachr., 286:2–3 (2013), 279–282 | DOI | MR | Zbl
[17] Reinov O. I., Latif Q., “Distribution of eigenvalues of nuclear operators and Grothendieck–Lidski type formulas”, J. Math. Sci., 193:2 (2013), 312–329 | DOI | MR | Zbl
[18] Reinov O. I., Latif Q., “Grothendieck–Lidskiǐ theorem for subspaces of quotients of $L_p$-spaces”, Banach Center Publ., 102 (2014), 189–195 | DOI | MR | Zbl
[19] Reinov O. I., “Some remarks on approximation properties with applications”, Ordered Structures and Applications, eds. De Jeu M., De Pagter B., Van Gaans O., Veraar M., Birkhäuser, Berlin, 2016, 371–394 | DOI | MR | Zbl
[20] Weyl H., “Inequalities between the two kinds of eigenvalues of a linear transformation”, Proc. Natl. Acad. Sci., 35 (1949), 408–411 | DOI | MR | Zbl
[21] White M. C., “Analytic multivalued functions and spectral trace”, Math. Ann., 304 (1996), 665–683 | DOI | MR