Trace, determinant and eigenvalues of kernel operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 56-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show how new results in the theory of determinants and traces and in the theory of quasi-normed tensor products can be applied for obtaining new theorems on the distribution of eigenvalues of nuclear operators in Banach spaces and on the coincidence of the spectral and nuclear traces of such operators. As examples, we consider new classes of operators — generalized nuclear Lorentz–LaPreste operators $N_{(r,s),p}$.
Keywords: kernel operator, trace, determinant, eigenvalue, tensor product
Mots-clés : quasinorm
@article{INTO_2024_233_a5,
     author = {O. I. Reinov},
     title = {Trace, determinant and eigenvalues of kernel operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {56--74},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a5/}
}
TY  - JOUR
AU  - O. I. Reinov
TI  - Trace, determinant and eigenvalues of kernel operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 56
EP  - 74
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a5/
LA  - ru
ID  - INTO_2024_233_a5
ER  - 
%0 Journal Article
%A O. I. Reinov
%T Trace, determinant and eigenvalues of kernel operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 56-74
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a5/
%G ru
%F INTO_2024_233_a5
O. I. Reinov. Trace, determinant and eigenvalues of kernel operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 56-74. http://geodesic.mathdoc.fr/item/INTO_2024_233_a5/

[1] Kadets V. M., “O pryamoi summe normirovannykh prostranstv”, Sib. mat. zh., 32:1 (1991), 186–189 | MR | Zbl

[2] Lidskii V. B., “Nesamosopryazhennye operatory, imeyuschie sled”, Dokl. AN SSSR., 125:3 (1959), 485–487 | Zbl

[3] Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, v. 1, Am. Math. Soc., Providence, Rhose Island, 2000 | MR | Zbl

[4] Gohberg I., Goldberg S., Krupnik N., Traces and Determinants of Linear Operators, Birkhäuser, Basel–Boston–Berlin, 2000 | MR | Zbl

[5] Grothendieck A., Produits tensoriels topologiques et éspaces nucléaires, 16 (1955), Mem. Am. Math. Soc. | MR | Zbl

[6] Hinrichs A., Pietsch A., “$p$-Nuclear operators in the sense of Grothendieck”, Math. Nachr., 283:2 (2010), 232–261 | DOI | MR | Zbl

[7] Kalton N. J., Quasi-Banach Spaces. Handbook of the Geometry of Banach Spaces. Vol. 2, North-Holland, Amsterdam

[8] König H., “On the eigenvalue spectrum of certain operator ideals”, Coll. Math., 44 (1981), 15–28 | MR

[9] König H., Eigenvalue Distribution of Compact Operators, Birkhäuser, Boston, 1986 | MR | Zbl

[10] Köthe G., Topological Vector Spaces. I, Springer, Berlin–Heidelberg–New York, 1969 | Zbl

[11] Lapreste J. T., “Opérateurs sommants et factorisations à travers les espaces $L_p$”, Stud. Math., 57 (1976), 47–83 | DOI | MR | Zbl

[12] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. Sequence Spaces. Vol. 1, Springer, Berlin–Heidelberg–New York, 1977 | MR

[13] Pietsch A., Operator Ideals, North-Holland, Berlin, 1978 | MR

[14] Pietsch A., Eigenvalues and $s$-Numbers, Cambridge Univ. Press, New York, 1987 | MR | Zbl

[15] Reinov O., Approximation properties associated with quasi-normed operator ideals of $(r,p,q)$-nuclear operators, http://www.mathsoc.spb.ru/preprint/2017/17-08.pdf

[16] Reinov O., Latif Q., “Grothendieck–Lidskiǐ theorem for subspaces of $L_p$-spaces”, Math. Nachr., 286:2–3 (2013), 279–282 | DOI | MR | Zbl

[17] Reinov O. I., Latif Q., “Distribution of eigenvalues of nuclear operators and Grothendieck–Lidski type formulas”, J. Math. Sci., 193:2 (2013), 312–329 | DOI | MR | Zbl

[18] Reinov O. I., Latif Q., “Grothendieck–Lidskiǐ theorem for subspaces of quotients of $L_p$-spaces”, Banach Center Publ., 102 (2014), 189–195 | DOI | MR | Zbl

[19] Reinov O. I., “Some remarks on approximation properties with applications”, Ordered Structures and Applications, eds. De Jeu M., De Pagter B., Van Gaans O., Veraar M., Birkhäuser, Berlin, 2016, 371–394 | DOI | MR | Zbl

[20] Weyl H., “Inequalities between the two kinds of eigenvalues of a linear transformation”, Proc. Natl. Acad. Sci., 35 (1949), 408–411 | DOI | MR | Zbl

[21] White M. C., “Analytic multivalued functions and spectral trace”, Math. Ann., 304 (1996), 665–683 | DOI | MR