Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a step-by-step method for the approximate analytical calculation of the matrix of covariance functions for a system of linear stochastic ordinary integro-differential equations with finite concentrated and distributed delays perturbed by additive fluctuations in the form of a vector standard Wiener process with independent components. The method proposed is a combination of the classical method of steps and the expansion of the state space and consists of several stages that make it possible to pass from a non-Markov system of stochastic equations to a chain of Markov systems without delay. Based on these systems, we construct sequences of systems of auxiliary linear ordinary differential equations for elements of vectors of mathematical expectations and covariance matrices of extended state vectors, and then obtaib the required equations for covariance functions.
Keywords: state vector, covariance function, stochastic integro-differential equation, concentrated delay, distributed delay, step-by-step method
@article{INTO_2024_233_a4,
     author = {I. E. Poloskov},
     title = {Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--55},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a4/}
}
TY  - JOUR
AU  - I. E. Poloskov
TI  - Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 46
EP  - 55
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a4/
LA  - ru
ID  - INTO_2024_233_a4
ER  - 
%0 Journal Article
%A I. E. Poloskov
%T Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 46-55
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a4/
%G ru
%F INTO_2024_233_a4
I. E. Poloskov. Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 46-55. http://geodesic.mathdoc.fr/item/INTO_2024_233_a4/

[1] Kolmanovskii V. B., Maizenberg T. L., “Optimalnoe upravlenie stokhasticheskimi sistemami s posledeistviem”, Avtomat. telemekh., 1973, no. 1, 47–61 | Zbl

[2] Poloskov I. E., “Rasshirenie fazovogo prostranstva v zadachakh analiza differentsialno-raznostnykh sistem so sluchainym vkhodom”, Avtomat. telemekh., 2002, no. 9, 58–73 | MR | Zbl

[3] Adimy M., Crauste F., Halanay A. et al., “Stability of limit cycles in a pluripotent stem cell dynamics model”, Chaos Solit. Fract., 27:4 (2006), 1091–1107 | DOI | MR | Zbl

[4] Buckwar E., “Euler–Maruyama and Milstein approximations for stochastic functional differential equations with distributed memory term”, Discussion Papers of Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes, Humboldt University, Berlin, 2003, 2023,16 | MR

[5] Buckwar E., “The $\theta$-Maruyama scheme for stochastic functional differential equations with distributed memory term”, Monte Carlo Meth. Appl., 10:3 (2004), 235–244 | MR | Zbl

[6] Chang M. H., Pang T., Pemy M., “Optimal control of stochastic functional differential equations with a bounded memory”, Int. J. Probab. Stochast. Processes., 80:1 (2008), 69–96 | DOI | MR | Zbl

[7] Ding X., Wu K., Liu M., “Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations”, Int. J. Comput. Math., 83:10 (2006), 753–763 | DOI | MR

[8] El-Hawary H. M., El-Shami K. A., “Numerical solution of Volterra delay-integro-differential equations via spline/spectral methods”, Int. J. Differ. Equations Appl., 12:3 (2013), 149–157 | MR | Zbl

[9] Geffert P. M., Stochastic Non-Excitable Systems with Time Delay: Modulation of Noise Effects by Time-Delayed Feedback, Springer, Wiesbaden, 2015 | MR | Zbl

[10] Gozzi F., Marinelli C., Savin S., “On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects”, J. Optim. Theory Appl., 142:2 (2009), 291–321 | DOI | MR | Zbl

[11] Hu P., Huang Ch., “Stability of Euler–Maruyama method for linear stochastic delay integro-differential equations”, Math. Num. Sinica., 32:1 (2010), 105–112 | MR | Zbl

[12] Koto T., “Stability of $\theta$-methods for delay integro-dfferential equations”, J. Comput. Appl. Math., 161:2 (2003), 393–404 | DOI | MR | Zbl

[13] Khasawneh F. A., Mann B. P., “Stability of delay integro-differential equations using a spectral element method”, Math. Comput. Model., 54:9–10 (2011), 2493–2503 | DOI | MR | Zbl

[14] Kushner H. J., Numerical Methods for Controlled Stochastic Delay Systems, Birkhäuser, Boston, 2008 | MR | Zbl

[15] Mao X., Stochastic Differential Equations and Applications, Woodhead Publishing, Cambridge, UK, 2011

[16] Poloskov I. E., “Numerical and analytical methods of study of stochastic systems with delay”, J. Math. Sci., 230:5 (2018), 746–750 | DOI

[17] Poloskov I. E., “New scheme for estimation of the first and senior moment functions for the response of linear delay differential system excited by additive and multiplicative noises”, J. Math. Sci., 246:4 (2020), 525–539 | DOI | MR

[18] Shakourifar M., Enright W. H., “Reliable approximate solution of systems of Volterra integro-differential equations with time-dependent delays”, SIAM J. Sci. Comput., 33:3 (2011), 1134–1158 | DOI | MR | Zbl

[19] Zhang Ch., “A class of new Pouzet–Runge–Kutta type methods for nonlinear functional integrodifferential equations”, Abstr. Appl. Anal., 2012, 21 | MR