Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_233_a4, author = {I. E. Poloskov}, title = {Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {46--55}, publisher = {mathdoc}, volume = {233}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a4/} }
TY - JOUR AU - I. E. Poloskov TI - Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 46 EP - 55 VL - 233 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_233_a4/ LA - ru ID - INTO_2024_233_a4 ER -
%0 Journal Article %A I. E. Poloskov %T Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 46-55 %V 233 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_233_a4/ %G ru %F INTO_2024_233_a4
I. E. Poloskov. Equations for covariance functions of the state vector of a linear system of stochastic differential equations with finite concentrated and distributed delays. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 46-55. http://geodesic.mathdoc.fr/item/INTO_2024_233_a4/
[1] Kolmanovskii V. B., Maizenberg T. L., “Optimalnoe upravlenie stokhasticheskimi sistemami s posledeistviem”, Avtomat. telemekh., 1973, no. 1, 47–61 | Zbl
[2] Poloskov I. E., “Rasshirenie fazovogo prostranstva v zadachakh analiza differentsialno-raznostnykh sistem so sluchainym vkhodom”, Avtomat. telemekh., 2002, no. 9, 58–73 | MR | Zbl
[3] Adimy M., Crauste F., Halanay A. et al., “Stability of limit cycles in a pluripotent stem cell dynamics model”, Chaos Solit. Fract., 27:4 (2006), 1091–1107 | DOI | MR | Zbl
[4] Buckwar E., “Euler–Maruyama and Milstein approximations for stochastic functional differential equations with distributed memory term”, Discussion Papers of Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes, Humboldt University, Berlin, 2003, 2023,16 | MR
[5] Buckwar E., “The $\theta$-Maruyama scheme for stochastic functional differential equations with distributed memory term”, Monte Carlo Meth. Appl., 10:3 (2004), 235–244 | MR | Zbl
[6] Chang M. H., Pang T., Pemy M., “Optimal control of stochastic functional differential equations with a bounded memory”, Int. J. Probab. Stochast. Processes., 80:1 (2008), 69–96 | DOI | MR | Zbl
[7] Ding X., Wu K., Liu M., “Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations”, Int. J. Comput. Math., 83:10 (2006), 753–763 | DOI | MR
[8] El-Hawary H. M., El-Shami K. A., “Numerical solution of Volterra delay-integro-differential equations via spline/spectral methods”, Int. J. Differ. Equations Appl., 12:3 (2013), 149–157 | MR | Zbl
[9] Geffert P. M., Stochastic Non-Excitable Systems with Time Delay: Modulation of Noise Effects by Time-Delayed Feedback, Springer, Wiesbaden, 2015 | MR | Zbl
[10] Gozzi F., Marinelli C., Savin S., “On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects”, J. Optim. Theory Appl., 142:2 (2009), 291–321 | DOI | MR | Zbl
[11] Hu P., Huang Ch., “Stability of Euler–Maruyama method for linear stochastic delay integro-differential equations”, Math. Num. Sinica., 32:1 (2010), 105–112 | MR | Zbl
[12] Koto T., “Stability of $\theta$-methods for delay integro-dfferential equations”, J. Comput. Appl. Math., 161:2 (2003), 393–404 | DOI | MR | Zbl
[13] Khasawneh F. A., Mann B. P., “Stability of delay integro-differential equations using a spectral element method”, Math. Comput. Model., 54:9–10 (2011), 2493–2503 | DOI | MR | Zbl
[14] Kushner H. J., Numerical Methods for Controlled Stochastic Delay Systems, Birkhäuser, Boston, 2008 | MR | Zbl
[15] Mao X., Stochastic Differential Equations and Applications, Woodhead Publishing, Cambridge, UK, 2011
[16] Poloskov I. E., “Numerical and analytical methods of study of stochastic systems with delay”, J. Math. Sci., 230:5 (2018), 746–750 | DOI
[17] Poloskov I. E., “New scheme for estimation of the first and senior moment functions for the response of linear delay differential system excited by additive and multiplicative noises”, J. Math. Sci., 246:4 (2020), 525–539 | DOI | MR
[18] Shakourifar M., Enright W. H., “Reliable approximate solution of systems of Volterra integro-differential equations with time-dependent delays”, SIAM J. Sci. Comput., 33:3 (2011), 1134–1158 | DOI | MR | Zbl
[19] Zhang Ch., “A class of new Pouzet–Runge–Kutta type methods for nonlinear functional integrodifferential equations”, Abstr. Appl. Anal., 2012, 21 | MR