Two-component window system based on coherent states and theta functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct a two-component window system of functions with good time-frequency localization. The system consists of two window subfamilies orthogonal to each other. The procedure for orthogonalizing the resulting subfamilies is discussed, explicit formulas for calculating the uncertainty constants are given, and the problem of completeness of the whole two-component system is considered. Questions about orthogonalization and completeness are reduced to testing a certain hypothesis about the zeros of the Zak transform.
Keywords: window system, coherent states, theta function, time-frequency localization, uncertainty constant, Zak transform
@article{INTO_2024_233_a1,
     author = {M. L. Zhadanova and S. N. Ushakov and E. A. Kiselev},
     title = {Two-component window system based on coherent states and theta functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a1/}
}
TY  - JOUR
AU  - M. L. Zhadanova
AU  - S. N. Ushakov
AU  - E. A. Kiselev
TI  - Two-component window system based on coherent states and theta functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 14
EP  - 26
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a1/
LA  - ru
ID  - INTO_2024_233_a1
ER  - 
%0 Journal Article
%A M. L. Zhadanova
%A S. N. Ushakov
%A E. A. Kiselev
%T Two-component window system based on coherent states and theta functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 14-26
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a1/
%G ru
%F INTO_2024_233_a1
M. L. Zhadanova; S. N. Ushakov; E. A. Kiselev. Two-component window system based on coherent states and theta functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 14-26. http://geodesic.mathdoc.fr/item/INTO_2024_233_a1/

[1] Dobeshi I., Desyat lektsii po veivletam, RKhD, Izhevsk, 2004

[2] Zhuravlev M. V., “O konstantakh neopredelennosti dlya lineinykh kombinatsii nekotorykh podsistem kogerentnykh sostoyanii”, Vestn. Samar. gos. un-ta., 2014, no. 7 (118), 17–31 | Zbl

[3] Kiselev E. A., “Vychislenie konstant Rissa i ortogonalizatsiya dlya nepolnykh sistem kogerentnykh sostoyanii s pomoschyu teta-funktsii”, Mat. sb., 207:8 (2016), 101–116 | DOI | Zbl

[4] Minin L. A., “O razlozhenii po freimam Gabora, porozhdennym funktsiei Gaussa”, Mat. zametki., 100:6 (2016), 951–953 | DOI | Zbl

[5] Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Novokuznetsk, 2000 | MR

[6] Novikov I. Ya., Teoriya vspleskov, Fizmatlit, M., 2005

[7] Perelomov A. M., “Zamechanie o polnote sistemy kogerentnykh sostoyanii”, Teor. mat. fiz., 6:2 (1971), 213–224 | MR

[8] Perelomov A. M., “Kogerentnye sostoyaniya i teta-funktsii”, Funkts. anal. prilozh., 6:4, 47–57 | MR

[9] Chui Ch., Vvedenie v veivlety: uchebnoe posobie dlya studentov vuzov, Mir, M., 2001

[10] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser/Springer, Basel, 2016 | MR | Zbl

[11] Zhuravlev M. V., Kiselev E. A., Minin L. A., Sitnik S. M. Jacobi Theta-functions and systems of integral shfts of Gaussian functions, J. Math. Sci., 173:2 (2011), 231–242 | DOI | MR

[12] Lyubarskii Yu. I., “Entire and subharmonic functions”, Frames in the Bargmann Space of Entire Functions, v. 11, eds. Levin B. Ya., Am. Math. Soc., Providence, 1992, 167–180 | MR | Zbl

[13] Olver F. W., Lozier D. W., Boisvert R., Clark C. W., The NIST Handbook of Mathematical Functions, Cambridge Univ. Press, New York, 2010 | MR