Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_233_a1, author = {M. L. Zhadanova and S. N. Ushakov and E. A. Kiselev}, title = {Two-component window system based on coherent states and theta functions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {14--26}, publisher = {mathdoc}, volume = {233}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a1/} }
TY - JOUR AU - M. L. Zhadanova AU - S. N. Ushakov AU - E. A. Kiselev TI - Two-component window system based on coherent states and theta functions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 14 EP - 26 VL - 233 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_233_a1/ LA - ru ID - INTO_2024_233_a1 ER -
%0 Journal Article %A M. L. Zhadanova %A S. N. Ushakov %A E. A. Kiselev %T Two-component window system based on coherent states and theta functions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 14-26 %V 233 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_233_a1/ %G ru %F INTO_2024_233_a1
M. L. Zhadanova; S. N. Ushakov; E. A. Kiselev. Two-component window system based on coherent states and theta functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 14-26. http://geodesic.mathdoc.fr/item/INTO_2024_233_a1/
[1] Dobeshi I., Desyat lektsii po veivletam, RKhD, Izhevsk, 2004
[2] Zhuravlev M. V., “O konstantakh neopredelennosti dlya lineinykh kombinatsii nekotorykh podsistem kogerentnykh sostoyanii”, Vestn. Samar. gos. un-ta., 2014, no. 7 (118), 17–31 | Zbl
[3] Kiselev E. A., “Vychislenie konstant Rissa i ortogonalizatsiya dlya nepolnykh sistem kogerentnykh sostoyanii s pomoschyu teta-funktsii”, Mat. sb., 207:8 (2016), 101–116 | DOI | Zbl
[4] Minin L. A., “O razlozhenii po freimam Gabora, porozhdennym funktsiei Gaussa”, Mat. zametki., 100:6 (2016), 951–953 | DOI | Zbl
[5] Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Novokuznetsk, 2000 | MR
[6] Novikov I. Ya., Teoriya vspleskov, Fizmatlit, M., 2005
[7] Perelomov A. M., “Zamechanie o polnote sistemy kogerentnykh sostoyanii”, Teor. mat. fiz., 6:2 (1971), 213–224 | MR
[8] Perelomov A. M., “Kogerentnye sostoyaniya i teta-funktsii”, Funkts. anal. prilozh., 6:4, 47–57 | MR
[9] Chui Ch., Vvedenie v veivlety: uchebnoe posobie dlya studentov vuzov, Mir, M., 2001
[10] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser/Springer, Basel, 2016 | MR | Zbl
[11] Zhuravlev M. V., Kiselev E. A., Minin L. A., Sitnik S. M. Jacobi Theta-functions and systems of integral shfts of Gaussian functions, J. Math. Sci., 173:2 (2011), 231–242 | DOI | MR
[12] Lyubarskii Yu. I., “Entire and subharmonic functions”, Frames in the Bargmann Space of Entire Functions, v. 11, eds. Levin B. Ya., Am. Math. Soc., Providence, 1992, 167–180 | MR | Zbl
[13] Olver F. W., Lozier D. W., Boisvert R., Clark C. W., The NIST Handbook of Mathematical Functions, Cambridge Univ. Press, New York, 2010 | MR