The regular cyclic matrix of an isolated singular point of the Sturm--Liouville equation of the standard form
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Sturm–Liouville equation of the standard form, we examine properties of the transfer matrix $\hat{C}$ along a closed path starting at a point $z_0$ and going counterclockwise around the boundary of a convex domain containing exactly one singular point $z_s$ of the potential (the boundary of the domain does not contain singular points). The main attention is paid to the study of singular points that are not branching points; we prove that in this case, if the trace of the matrix $\hat{C}$ is not equal to two, then all its elements are entire functions of the spectral parameter of order $1/2$ and type $2|z_0 - z_s|$ with a trigonometric indicator.
Mots-clés : Sturm–Liouville equations on the complex plane, transfer matrix
Keywords: singular points
@article{INTO_2024_233_a0,
     author = {A. A. Golubkov},
     title = {The regular cyclic matrix of an isolated singular point of the {Sturm--Liouville} equation of the standard form},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a0/}
}
TY  - JOUR
AU  - A. A. Golubkov
TI  - The regular cyclic matrix of an isolated singular point of the Sturm--Liouville equation of the standard form
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 3
EP  - 13
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a0/
LA  - ru
ID  - INTO_2024_233_a0
ER  - 
%0 Journal Article
%A A. A. Golubkov
%T The regular cyclic matrix of an isolated singular point of the Sturm--Liouville equation of the standard form
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 3-13
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a0/
%G ru
%F INTO_2024_233_a0
A. A. Golubkov. The regular cyclic matrix of an isolated singular point of the Sturm--Liouville equation of the standard form. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2024_233_a0/

[1] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939

[2] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[3] Golubkov A. A., “Kraevaya zadacha dlya uravneniya Shturma—Liuvillya s kusochno-tselym potentsialom na krivoi i usloviyami razryva reshenii”, Sib. elektron. mat. izv., 16 (2019), 1005–1027 | Zbl

[4] Golubkov A. A., “Asimptotika peredatochnoi matritsy uravneniya Shturma—Liuvillya s kusochno-tselym potentsialom na krivoi”, Vestn. MGU. Ser. 1. Mat. Mekh., 2019, no. 2, 37–41 | Zbl

[5] Golubkov A. A., “Obratnaya zadacha dlya uravneniya Shturma—Liuvillya s kusochno-tselym potentsialom i kusochno-postoyannym vesom na krivoi”, Sib. elektron. mat. izv., 18:2 (2021), 951–974 | MR | Zbl

[6] Golubkov A. A., “Spektr operatora Shturma—Liuvillya na krivoi s parametrom v kraevykh usloviyakh i usloviyakh razryvov reshenii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 193 (2021), 45–68 | DOI

[7] Golubkov A. A., “Kvazibezmonodromnye osobye tochki uravneniya Shturma—Liuvillya standartnogo vida na kompleksnoi ploskosti”, Differ. uravn., 58:4 (2022), 1032–1038 | Zbl

[8] Gursa E., Kurs matematicheskogo analiza. Differentsialnye uravneniya, GTTI, M.-L., 1933

[9] Ishkin Kh. K., “O kriterii bezmonodromnosti uravneniya Shturma—Liuvillya”, Mat. zametki., 94:4 (2013), 552–568 | DOI | Zbl

[10] Ishkin Kh. K., “Kriterii lokalizatsii spektra operatora Shturma—Liuvillya na krivoi”, Algebra anal., 28:1 (2016), 52–88 | MR

[11] Ishkin Kh. K., Nabiullina A. A., “Asimptotika reshenii uravneniya Shturma—Liuvillya s meromorfnym potentsialom”, J. Math. Mech. Comp. Sci., 104:4 (2019), 24–31 | DOI

[12] Ishkin Kh. K., Rezbaev A. V., “K formule Devisa o raspredelenii sobstvennykh chisel nesamosopryazhennogo differentsialnogo operatora”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 153 (2018), 84–93 | MR

[13] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[14] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1981

[15] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[16] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983

[17] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR

[18] Yaglom I. M., Boltyanskii V. G., Vypuklye figury., GITTL, M.-L., 1951 | MR

[19] Langer R. E., “The boundary problem of an ordinary linear differential system in the complex domain”, Trans. Am. Math. Soc., 46 (1939), 151–190 | DOI | MR | Zbl