Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_233_a0, author = {A. A. Golubkov}, title = {The regular cyclic matrix of an isolated singular point of the {Sturm--Liouville} equation of the standard form}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--13}, publisher = {mathdoc}, volume = {233}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a0/} }
TY - JOUR AU - A. A. Golubkov TI - The regular cyclic matrix of an isolated singular point of the Sturm--Liouville equation of the standard form JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 3 EP - 13 VL - 233 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_233_a0/ LA - ru ID - INTO_2024_233_a0 ER -
%0 Journal Article %A A. A. Golubkov %T The regular cyclic matrix of an isolated singular point of the Sturm--Liouville equation of the standard form %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 3-13 %V 233 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_233_a0/ %G ru %F INTO_2024_233_a0
A. A. Golubkov. The regular cyclic matrix of an isolated singular point of the Sturm--Liouville equation of the standard form. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2024_233_a0/
[1] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939
[2] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[3] Golubkov A. A., “Kraevaya zadacha dlya uravneniya Shturma—Liuvillya s kusochno-tselym potentsialom na krivoi i usloviyami razryva reshenii”, Sib. elektron. mat. izv., 16 (2019), 1005–1027 | Zbl
[4] Golubkov A. A., “Asimptotika peredatochnoi matritsy uravneniya Shturma—Liuvillya s kusochno-tselym potentsialom na krivoi”, Vestn. MGU. Ser. 1. Mat. Mekh., 2019, no. 2, 37–41 | Zbl
[5] Golubkov A. A., “Obratnaya zadacha dlya uravneniya Shturma—Liuvillya s kusochno-tselym potentsialom i kusochno-postoyannym vesom na krivoi”, Sib. elektron. mat. izv., 18:2 (2021), 951–974 | MR | Zbl
[6] Golubkov A. A., “Spektr operatora Shturma—Liuvillya na krivoi s parametrom v kraevykh usloviyakh i usloviyakh razryvov reshenii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 193 (2021), 45–68 | DOI
[7] Golubkov A. A., “Kvazibezmonodromnye osobye tochki uravneniya Shturma—Liuvillya standartnogo vida na kompleksnoi ploskosti”, Differ. uravn., 58:4 (2022), 1032–1038 | Zbl
[8] Gursa E., Kurs matematicheskogo analiza. Differentsialnye uravneniya, GTTI, M.-L., 1933
[9] Ishkin Kh. K., “O kriterii bezmonodromnosti uravneniya Shturma—Liuvillya”, Mat. zametki., 94:4 (2013), 552–568 | DOI | Zbl
[10] Ishkin Kh. K., “Kriterii lokalizatsii spektra operatora Shturma—Liuvillya na krivoi”, Algebra anal., 28:1 (2016), 52–88 | MR
[11] Ishkin Kh. K., Nabiullina A. A., “Asimptotika reshenii uravneniya Shturma—Liuvillya s meromorfnym potentsialom”, J. Math. Mech. Comp. Sci., 104:4 (2019), 24–31 | DOI
[12] Ishkin Kh. K., Rezbaev A. V., “K formule Devisa o raspredelenii sobstvennykh chisel nesamosopryazhennogo differentsialnogo operatora”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 153 (2018), 84–93 | MR
[13] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958
[14] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1981
[15] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[16] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983
[17] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR
[18] Yaglom I. M., Boltyanskii V. G., Vypuklye figury., GITTL, M.-L., 1951 | MR
[19] Langer R. E., “The boundary problem of an ordinary linear differential system in the complex domain”, Trans. Am. Math. Soc., 46 (1939), 151–190 | DOI | MR | Zbl