Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we construct a general solution of the generalized Cauchy-–Riemann equation whose coefficient admits a first-order singularity on a circle contained in the domain, and study a boundary-value problem that combines elements of the Riemann-–Hilbert problem and the linear conjugation problem.
Mots-clés : Cauchy–Riemann equations
Keywords: singularity in the coefficient, Pompeiu–Vekua operator, boundary-value problem
@article{INTO_2024_232_a7,
     author = {A. B. Rasulov and Yu. S. Fedorov and A. M. Sergeeva},
     title = {Riemann--Hilbert-type problems for the generalized {Cauchy--Riemann} equation with a leading coefficient having a singularity in a circle},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {232},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a7/}
}
TY  - JOUR
AU  - A. B. Rasulov
AU  - Yu. S. Fedorov
AU  - A. M. Sergeeva
TI  - Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 89
EP  - 98
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_232_a7/
LA  - ru
ID  - INTO_2024_232_a7
ER  - 
%0 Journal Article
%A A. B. Rasulov
%A Yu. S. Fedorov
%A A. M. Sergeeva
%T Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 89-98
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_232_a7/
%G ru
%F INTO_2024_232_a7
A. B. Rasulov; Yu. S. Fedorov; A. M. Sergeeva. Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 89-98. http://geodesic.mathdoc.fr/item/INTO_2024_232_a7/

[1] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966

[2] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[3] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959

[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[5] Mikhailov L. G., Novye klassy osobykh integralnykh uravnenii i ikh primenenie k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Dushanbe, 1963 | MR

[6] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[7] Pale R., Seminar po teoreme Ati—Zingera ob indekse, Mir, M., 1970

[8] Radzhabov N. R., Vvedenie v teoriyu differentsialnykh uravnenii v chastnykh proizvodnykh so sverkhsingulyarnymi koeffitsientami, Izd-vo TGU, Dushanbe, 1992

[9] Soldatov A. P., “Kpaevaya zadacha lineinogo soppyazheniya teopii funktsii”, Izv. AH SSSR. Sep. mat., 43:1 (1979), 184–202 | MR | Zbl

[10] Soldatov A. P., “Singulyarnye integralnye operatory i ellipticheskie kraevye zadachi. I”, Sovr. mat. Fundam. napr., 63:1 (2017), 1–189 | MR

[11] Usmanov Z. D., Obobschennye sistemy Koshi—Rimana s singulyarnoi tochkoi, Izd-vo AN Tadzh. SSR, Dushanbe, 1993

[12] Abdymanapov S. A., Tungatarov A. B., Some classes of elliptic systems in the plane with singular coefficients, Nauka, Almaty, 2005

[13] Begehr H., Dao-Qing Dai., “On continuous solutions of a generalized Cauchy–Riemann system with more than one singularity”, J. Differ. Equations., 196 (2004), 67–90 | DOI | MR | Zbl

[14] Meziani A., “Representation of solutions of a singular CR equation in the plane”, Complex Var. Ellipt. Equations., 53 (2008), 1111–1130 | DOI | MR | Zbl

[15] Rasulov A. B., “Representation of the general solution of an equation of the Cauchy–Riemann type with a supersingular circle and a singular point”, Differ. Equations., 53 (2017), 809–817 | DOI | MR | Zbl