Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 89-98

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we construct a general solution of the generalized Cauchy-–Riemann equation whose coefficient admits a first-order singularity on a circle contained in the domain, and study a boundary-value problem that combines elements of the Riemann-–Hilbert problem and the linear conjugation problem.
Mots-clés : Cauchy–Riemann equations
Keywords: singularity in the coefficient, Pompeiu–Vekua operator, boundary-value problem
@article{INTO_2024_232_a7,
     author = {A. B. Rasulov and Yu. S. Fedorov and A. M. Sergeeva},
     title = {Riemann--Hilbert-type problems for the generalized {Cauchy--Riemann} equation with a leading coefficient having a singularity in a circle},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {232},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a7/}
}
TY  - JOUR
AU  - A. B. Rasulov
AU  - Yu. S. Fedorov
AU  - A. M. Sergeeva
TI  - Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 89
EP  - 98
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_232_a7/
LA  - ru
ID  - INTO_2024_232_a7
ER  - 
%0 Journal Article
%A A. B. Rasulov
%A Yu. S. Fedorov
%A A. M. Sergeeva
%T Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 89-98
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_232_a7/
%G ru
%F INTO_2024_232_a7
A. B. Rasulov; Yu. S. Fedorov; A. M. Sergeeva. Riemann--Hilbert-type problems for the generalized Cauchy--Riemann equation with a leading coefficient having a singularity in a circle. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 89-98. http://geodesic.mathdoc.fr/item/INTO_2024_232_a7/