General scheme for constructing the determining function in a control problem for a dynamical system with partial derivatives of different orders
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 78-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a control system with partial derivatives, a criterion for the complete controllability is derived by using the cascade decomposition method based on the transition from the original system to reduced systems in subspaces. We obtain a function, which belongs to a subspace of minimal dimension and determines the type of solution of the program control problem, i.e., the state and control functions in the analytical form. Necessary and sufficient conditions for the existence of the determining function are established and a scheme of its construction is given. Necessary and sufficient conditions for the existence of a determining function in the polynomial, exponential, and fractional-rational forms are found; formulas for constructing such functions are proposed. For the original system, a solution of the program control problem is constructed.
Keywords: dynamical system with partial derivatives, complete controllability, program control, cascade decomposition method
@article{INTO_2024_232_a6,
     author = {E. V. Raetskaya},
     title = {General scheme for constructing the determining function in a control problem for a dynamical system with partial derivatives of different orders},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {78--88},
     publisher = {mathdoc},
     volume = {232},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a6/}
}
TY  - JOUR
AU  - E. V. Raetskaya
TI  - General scheme for constructing the determining function in a control problem for a dynamical system with partial derivatives of different orders
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 78
EP  - 88
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_232_a6/
LA  - ru
ID  - INTO_2024_232_a6
ER  - 
%0 Journal Article
%A E. V. Raetskaya
%T General scheme for constructing the determining function in a control problem for a dynamical system with partial derivatives of different orders
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 78-88
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_232_a6/
%G ru
%F INTO_2024_232_a6
E. V. Raetskaya. General scheme for constructing the determining function in a control problem for a dynamical system with partial derivatives of different orders. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 78-88. http://geodesic.mathdoc.fr/item/INTO_2024_232_a6/

[1] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976

[2] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975

[3] Zubova S. P., “Reshenie obratnykh zadach dlya lineinykh dinamicheskikh sistem kaskadnym metodom”, Dokl. RAN., 447:6 (2012), 599–602 | Zbl

[4] Zubova S. P., Raetskaya E. V., “Ob invariantnosti nestatsionarnoi sistemy nablyudeniya otnositelno nekotorykh vozmuschenii”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 25:6 (2010), 1678–1679

[5] Zubova S. P., Raetskaya E. V., “Postroenie upravleniya dlya polucheniya zadannogo vykhoda v sisteme nablyudeniya”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 20:5 (2015), 1400–1400

[6] Kalman R. E., Ob obschei teorii sistem upravleniya, Izd-vo AN SSSR, M., 1960

[7] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | MR

[9] Raetskaya E. V., Uslovnaya upravlyaemost i nablyudamost lineinykh sistem, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Voronezh, 2004

[10] Raetskaya E. V., “Issledovanie singulyarno vozmuschennoi sistemy upravleniya”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 23:122 (2018), 303–307

[11] Raetskaya E. V., “Strukturnyi analiz funktsii upravleniya dinamicheskoi sistemoi v chastnykh proizvodnykh”, Model. sist. prots., 16:1 (2023), 93–104

[12] Uonem M., Lineinye mnogomernye sistemy upravleniya, Nauka, M., 1980 | MR

[13] Zubova S. P., Raetskaya E. V., “Invariance of a nonstationary observability system under certain perturbations”, J. Math. Sci., 188:3 (2013), 218–226 | DOI | MR | Zbl

[14] Zubova S. P., Raetskaya E. V., “A study of the rigidity of descriptor dynamical systems in a Banach space”, J. Math. Sci., 208:1 (2015), 119–124 | DOI | MR | Zbl

[15] Zubova S. P., Raetskaya E. V., “Algorithm to solve linear multipoint problems of control by the method of cascade decomposition”, Automat. Remote Control., 78:7 (2017), 1189–1202 | DOI | MR | Zbl

[16] Zubova S. P., Raetskaya E. V., “Solution of the multi-point control problem for a dynamic system in partial derivatives”, Math. Meth. Appl. Sci., 44:15 (2021), 11998–12009 | DOI | MR | Zbl

[17] Zubova S. P., Raetskaya E. V., “Construction of control providing the desired output of the linear dynamic system”, Automat. Remote Control., 79:5 (2018), 774–791 | DOI | MR

[18] Zubova S. P., Raetskaya E. V., Trung L. H., “Control problem for dynamical systems with partial derivatives”, J. Math. Sci., 249:6 (2021), 941–953 | DOI | MR

[19] Zubova S. P., Trung L. H., Raetskaya E. V., “On polinomial solutions of the linear stationary control system”, Automat. Remote Control., 69:11 (2008), 1852–1858 | DOI | MR