Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 50-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the well-known Riemann method and a new method for compensating the boundary regime with the right-hand side of the equation, we obtain the Riemann formulas for the unique and stable classical solution of the first mixed problem for a linear general inhomogeneous telegraph equation with variable coefficients in the first quadrant. From the formulation of the mixed problem, the definition of classical solutions, and the established criterion for the smoothness of the right-hand side of the equation, we obtain a criterion of the well-posedness in the Hadamard sense. This criterion consists of smoothness requirements and three conditions for matching the right-hand side of the equation and the boundary and initial data. The validity of the Riemann formulas and the well-posedness criterion is confirmed by their coincidence with the well-known formulas of the classical solution and the well-posedness criterion for the model telegraph equation.
Keywords: first mixed problem, telegraph equation, implicit characteristic, global correctness theorem, smoothness condition, consistency condition
@article{INTO_2024_232_a4,
     author = {F. E. Lomovtsev},
     title = {Generalized {Riemann} formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--69},
     publisher = {mathdoc},
     volume = {232},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a4/}
}
TY  - JOUR
AU  - F. E. Lomovtsev
TI  - Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 50
EP  - 69
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_232_a4/
LA  - ru
ID  - INTO_2024_232_a4
ER  - 
%0 Journal Article
%A F. E. Lomovtsev
%T Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 50-69
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_232_a4/
%G ru
%F INTO_2024_232_a4
F. E. Lomovtsev. Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 50-69. http://geodesic.mathdoc.fr/item/INTO_2024_232_a4/

[7] Baranovskaya S. N., O klassicheskom reshenii pervoi smeshannoi zadachi dlya odnomernogo giperbolicheskogo uravneniya, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., BGU, Minsk, 1991

[8] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR

[9] Kornev V. V., “Rezolventnyi podkhod k metodu Fure v smeshannoi zadache dlya neodnorodnogo volnovogo uravneniya”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 16:4 (2016), 403–412 | MR | Zbl

[10] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[11] Lomovtsev F. E., “Pervaya smeshannaya zadacha dlya obschego telegrafnogo uravneniya s peremennymi koeffitsientami na polupryamoi”, Zh. Belorus. gos. un-ta. Mat. Inform., 2021, no. 1, 18–38

[12] Lomovtsev F. E., “Metod vspomogatelnykh smeshannykh zadach dlya poluogranichennoi struny”, Tez. dokl. Mezhdunar. mat. konf. «VI Bogdanovskie chteniya po obyknovennym differentsialnym uravneniyam» (Minsk, 7–10 dekabrya 2015 g.), In-t mat. NAN Belarusi, Minsk, 2015, 74–75

[13] Lomovtsev F. E., “Globalnaya teorema korrektnosti po Adamaru pervoi smeshannoi zadachi dlya volnovogo uravneniya v polupolose ploskosti”, Vesn. Grodz. dzyarzh. ŭn-ta im. Ya. Kupaly. Ser. 2., 11:1 (2021), 68–82

[14] Lomovtsev F. E., “O neobkhodimykh i dostatochnykh usloviyakh odnoznachnoi razreshimosti zadachi Koshi dlya giperbolicheskikh differentsialnykh uravnenii vtorogo poryadka s peremennoi oblastyu opredeleniya operatornykh koeffitsientov”, Differ. uravn., 28:5 (1992), 873–886 | MR | Zbl

[15] Lomovtsev F. E., “Zadacha Gursa dlya sopryazhennogo modelnogo telegrafnogo uravneniya so skorostyu $a(x,t)$ v verkhnei poluploskosti”, Vestn. Polotsk. gos. un-ta. Ser. S. Fundam. nauki., 2022, no. 4, 92–102

[16] Novikov E. N., Smeshannye zadachi dlya uravneniya vynuzhdennykh kolebanii ogranichennoi struny pri nestatsionarnykh granichnykh usloviyakh s pervoi i vtoroi kosymi proizvodnymi, In-t mat. NAN Belarusi, Minsk, 2017

[17] Tikhonov A. N., Uravneniya matematicheskoi fiziki, Nauka, M., 2004

[18] Khromov A. P., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Dokl. RAN., 484:1 (2019), 18–20 | DOI | Zbl

[19] Khromov A. P., “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differ. uravn., 55:5 (2019), 717–731 | DOI | Zbl

[20] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh / Preprint, In-t mat. AN USSR, Kiev, 1990 | MR

[21] Lomovtsev F. E., “Conclusion of the smoothness criterion for the right-hand side of the model telegraph equation with the rate $a(x,t)$ by the correction method”, Mat. Mezhdunar. konf. «XXXIV Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya-XXKhII» (Voronezh, 3-9 maya 2021 g.), Izd. dom VGU, Voronezh, 2021, 284–287

[22] Lomovtsev F. E., “The smoothness criterion for the classical solution to inhomogeneous model telegraph equation at the rate $a(x,t)$ on the half-line”, Tr. 10 Mezhdunar. nauch. semin. AMADE-2021 (Minsk, 13–17 sentyabrya 2021Eg.), BGU, Minsk, 2022, 43–53

[23] Lomovtsev F. E., “Global correctness theorem of the first mixed problem for the model telegraph equation at the rate $a(x,t)$ in the half-strip of the plane”, Vesn. Grodz. dzyarzh. ŭn-ta im. Ya. Kupaly. Ser. 2., 11:3 (2021), 13–26

[24] Lomovtsev F. E., “Global correctness theorem to the first mixed problem for the general telegraph equation with variable coefficients on the segment”, Probl. fiz. mat. tekhn., 2022, no. 1 (50), 62–73

[25] Lomovtsev F. E., “Riemann formula of the classical solution to the first mixed problem for the general telegraph equation with variable coefficients on the half-line”, Tez. dokl. Mezhdunar. mat. konf. «VII Bogdanovskie chteniya po obyknovennym differentsialnym uravneniyam» (Minsk, 1-4 iyunya 2021 g.), In-t mat. NAN Belarusi, Minsk, 2021, 201–203

[26] Lomovtsev F. E., “Generalized Riemann formula of the classical solution to the Cauchy problem for the general telegraph equation with variable coefficients”, Mat. Mezhdunar. konf. «XXXIV Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya-XXKhII» (Voronezh, 3-9 maya 2021 g.), Izd. dom VGU, Voronezh, 2021, 288–289

[27] Schauder J., “Über lineare elliptiche Differentialgleichungen zweiter Ordnung”, Math. Z., 38 (1934), 257–282 | DOI | MR | Zbl

[28] Schwartz L., Theorie des distributions, Hermann, Paris, 1950–1951 | MR | Zbl