Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a4, author = {F. E. Lomovtsev}, title = {Generalized {Riemann} formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {50--69}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a4/} }
TY - JOUR AU - F. E. Lomovtsev TI - Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 50 EP - 69 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_232_a4/ LA - ru ID - INTO_2024_232_a4 ER -
%0 Journal Article %A F. E. Lomovtsev %T Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 50-69 %V 232 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_232_a4/ %G ru %F INTO_2024_232_a4
F. E. Lomovtsev. Generalized Riemann formulas for the solution of the first mixed problem for the general telegraph equation with variable coefficients in the first quadrant. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 50-69. http://geodesic.mathdoc.fr/item/INTO_2024_232_a4/
[7] Baranovskaya S. N., O klassicheskom reshenii pervoi smeshannoi zadachi dlya odnomernogo giperbolicheskogo uravneniya, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., BGU, Minsk, 1991
[8] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR
[9] Kornev V. V., “Rezolventnyi podkhod k metodu Fure v smeshannoi zadache dlya neodnorodnogo volnovogo uravneniya”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 16:4 (2016), 403–412 | MR | Zbl
[10] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[11] Lomovtsev F. E., “Pervaya smeshannaya zadacha dlya obschego telegrafnogo uravneniya s peremennymi koeffitsientami na polupryamoi”, Zh. Belorus. gos. un-ta. Mat. Inform., 2021, no. 1, 18–38
[12] Lomovtsev F. E., “Metod vspomogatelnykh smeshannykh zadach dlya poluogranichennoi struny”, Tez. dokl. Mezhdunar. mat. konf. «VI Bogdanovskie chteniya po obyknovennym differentsialnym uravneniyam» (Minsk, 7–10 dekabrya 2015 g.), In-t mat. NAN Belarusi, Minsk, 2015, 74–75
[13] Lomovtsev F. E., “Globalnaya teorema korrektnosti po Adamaru pervoi smeshannoi zadachi dlya volnovogo uravneniya v polupolose ploskosti”, Vesn. Grodz. dzyarzh. ŭn-ta im. Ya. Kupaly. Ser. 2., 11:1 (2021), 68–82
[14] Lomovtsev F. E., “O neobkhodimykh i dostatochnykh usloviyakh odnoznachnoi razreshimosti zadachi Koshi dlya giperbolicheskikh differentsialnykh uravnenii vtorogo poryadka s peremennoi oblastyu opredeleniya operatornykh koeffitsientov”, Differ. uravn., 28:5 (1992), 873–886 | MR | Zbl
[15] Lomovtsev F. E., “Zadacha Gursa dlya sopryazhennogo modelnogo telegrafnogo uravneniya so skorostyu $a(x,t)$ v verkhnei poluploskosti”, Vestn. Polotsk. gos. un-ta. Ser. S. Fundam. nauki., 2022, no. 4, 92–102
[16] Novikov E. N., Smeshannye zadachi dlya uravneniya vynuzhdennykh kolebanii ogranichennoi struny pri nestatsionarnykh granichnykh usloviyakh s pervoi i vtoroi kosymi proizvodnymi, In-t mat. NAN Belarusi, Minsk, 2017
[17] Tikhonov A. N., Uravneniya matematicheskoi fiziki, Nauka, M., 2004
[18] Khromov A. P., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Dokl. RAN., 484:1 (2019), 18–20 | DOI | Zbl
[19] Khromov A. P., “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differ. uravn., 55:5 (2019), 717–731 | DOI | Zbl
[20] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh / Preprint, In-t mat. AN USSR, Kiev, 1990 | MR
[21] Lomovtsev F. E., “Conclusion of the smoothness criterion for the right-hand side of the model telegraph equation with the rate $a(x,t)$ by the correction method”, Mat. Mezhdunar. konf. «XXXIV Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya-XXKhII» (Voronezh, 3-9 maya 2021 g.), Izd. dom VGU, Voronezh, 2021, 284–287
[22] Lomovtsev F. E., “The smoothness criterion for the classical solution to inhomogeneous model telegraph equation at the rate $a(x,t)$ on the half-line”, Tr. 10 Mezhdunar. nauch. semin. AMADE-2021 (Minsk, 13–17 sentyabrya 2021Eg.), BGU, Minsk, 2022, 43–53
[23] Lomovtsev F. E., “Global correctness theorem of the first mixed problem for the model telegraph equation at the rate $a(x,t)$ in the half-strip of the plane”, Vesn. Grodz. dzyarzh. ŭn-ta im. Ya. Kupaly. Ser. 2., 11:3 (2021), 13–26
[24] Lomovtsev F. E., “Global correctness theorem to the first mixed problem for the general telegraph equation with variable coefficients on the segment”, Probl. fiz. mat. tekhn., 2022, no. 1 (50), 62–73
[25] Lomovtsev F. E., “Riemann formula of the classical solution to the first mixed problem for the general telegraph equation with variable coefficients on the half-line”, Tez. dokl. Mezhdunar. mat. konf. «VII Bogdanovskie chteniya po obyknovennym differentsialnym uravneniyam» (Minsk, 1-4 iyunya 2021 g.), In-t mat. NAN Belarusi, Minsk, 2021, 201–203
[26] Lomovtsev F. E., “Generalized Riemann formula of the classical solution to the Cauchy problem for the general telegraph equation with variable coefficients”, Mat. Mezhdunar. konf. «XXXIV Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya-XXKhII» (Voronezh, 3-9 maya 2021 g.), Izd. dom VGU, Voronezh, 2021, 288–289
[27] Schauder J., “Über lineare elliptiche Differentialgleichungen zweiter Ordnung”, Math. Z., 38 (1934), 257–282 | DOI | MR | Zbl
[28] Schwartz L., Theorie des distributions, Hermann, Paris, 1950–1951 | MR | Zbl