Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a3, author = {V. I. Korzyuk and J. V. Rudzko}, title = {Classical solution of the third mixed problem for the telegraph equation with nonlinear potential}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {37--49}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a3/} }
TY - JOUR AU - V. I. Korzyuk AU - J. V. Rudzko TI - Classical solution of the third mixed problem for the telegraph equation with nonlinear potential JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 37 EP - 49 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_232_a3/ LA - ru ID - INTO_2024_232_a3 ER -
%0 Journal Article %A V. I. Korzyuk %A J. V. Rudzko %T Classical solution of the third mixed problem for the telegraph equation with nonlinear potential %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 37-49 %V 232 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_232_a3/ %G ru %F INTO_2024_232_a3
V. I. Korzyuk; J. V. Rudzko. Classical solution of the third mixed problem for the telegraph equation with nonlinear potential. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 37-49. http://geodesic.mathdoc.fr/item/INTO_2024_232_a3/