Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a3, author = {V. I. Korzyuk and J. V. Rudzko}, title = {Classical solution of the third mixed problem for the telegraph equation with nonlinear potential}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {37--49}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a3/} }
TY - JOUR AU - V. I. Korzyuk AU - J. V. Rudzko TI - Classical solution of the third mixed problem for the telegraph equation with nonlinear potential JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 37 EP - 49 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_232_a3/ LA - ru ID - INTO_2024_232_a3 ER -
%0 Journal Article %A V. I. Korzyuk %A J. V. Rudzko %T Classical solution of the third mixed problem for the telegraph equation with nonlinear potential %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 37-49 %V 232 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_232_a3/ %G ru %F INTO_2024_232_a3
V. I. Korzyuk; J. V. Rudzko. Classical solution of the third mixed problem for the telegraph equation with nonlinear potential. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 37-49. http://geodesic.mathdoc.fr/item/INTO_2024_232_a3/
[1] Dzhokhadze O. M., “Smeshannaya zadacha s nelineinym granichnym usloviem dlya polulineinogo uravneniya kolebaniya struny”, Differ. uravn., 58:5 (2022), 591–606 | Zbl
[2] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii: kurs lektsii, BGU, Minsk, 2017
[3] Korzyuk V. I., Kozlovskaya I. S. Naumovets S. N., “Klassicheskoe reshenie pervoi smeshannoi zadachi odnomernogo volnovogo uravneniya s usloviyami tipa Koshi”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk., 2015, no. 1, 7–21
[4] Korzyuk V. I., Naumovets S. N., Serikov V. P., “Smeshannaya zadacha dlya odnomernogo volnovogo uravneniya s usloviyami sopryazheniya i proizvodnymi vtorogo poryadka v granichnykh usloviyakh”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk., 56:3 (2020), 287–297 | MR
[5] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe i slaboe reshenie pervoi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Izv. Irkut. gos. un-ta. Ser. Mat., 43 (2023), 48–63 | MR | Zbl
[6] Korzyuk V. I., Rudko Ya. V., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differ. uravn., 58:2 (2022), 174–184 | Zbl
[7] Korzyuk V. I., Rudko Ya. V., “Lokalnoe klassicheskoe reshenie zadachi Koshi dlya polulineinogo giperbolicheskogo uravneniya v sluchae dvukh nezavisimykh peremennykh”, Mat. Mezhdunar. nauch. konf. «Ufimskaya osennyaya matematicheskaya shkola». T. 2 (Ufa, 28 sentyabrya"– 1 oktyabrya 2022), RITs BashGU, Ufa, 2022, 48–50
[8] Korzyuk V. I., Stolyarchuk I. I., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka v krivolineinoi polupolose s peremennymi koeffitsientami”, Differ. uravn., 53:1 (2017), 77–88 | DOI | MR | Zbl
[9] Korzyuk V. I., Stolyarchuk I. I., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya uravneniya tipa Kleina—Gordona—Foka s neodnorodnymi usloviyami soglasovaniya”, Dokl. NAN Belarusi., 63:1 (2019), 7–13 | MR | Zbl
[10] Matematicheskaya entsiklopediya, v. 3, Sovetskaya entsiklopediya, M., 1982
[11] Moiseev E. I., Korzyuk V. I., Kozlovskaya I. S., “Klassicheskoe reshenie zadachi s integralnym usloviem dlya odnomernogo volnovogo uravneniya”, Differ. uravn., 50:10 (2014), 1373–1385 | DOI | MR | Zbl
[12] Prokhorov A. M., Fizicheskaya entsiklopediya. T. 3, M., 1992
[13] Fuschich V. I., “Simmetriya v zadachakh matematicheskoi fiziki”, Teoretiko-algebraicheskie issledovaniya v matematicheskoi fizike, eds. Fuschich V. I., In-t mat. AN USSR, Kiev, 1981, 6–28 | MR
[14] Kharibegashvili S. S., Dzhokhadze O. M., “Zadacha Koshi dlya obobschennogo nelineinogo uravneniya Liuvillya”, Differ. uravn., 47:12, 1741–1753 | MR | Zbl
[15] Evans L. C., Partial Differential Equations, Am. Math. Soc., Providence, 2010 | MR | Zbl
[16] Giai Giang Vo., “A semilinear wave equation with a boundary condition of many-point type: Global existence and stability of weak solutions”, Abstr. Appl. Anal., 2015 (2015), 531872 | MR | Zbl
[17] Korzyuk V. I., Rudzko J. V., On the absence and non-uniqueness of classical solutions of mixed problems for the telegraph equation with a nonlinear potential, arXiv: 2303.17483 [math.AP]
[18] Nesterenko Yu. R., “Mixed problem for the wave equation with Robin boundary conditions”, Dokl. Math., 79:3 (2009), 322–324 | DOI | MR | Zbl
[19] Nikitin A. A., “On the mixed problem for the wave equation with the third and first boundary conditions”, Differ. Equations., 43:12 (2007), 1733–1741 | DOI | MR | Zbl
[20] Le Thi Phuong Ngoc, Le Huu Ky Son, Nguyen Thanh Long, “Existence, blow-up and exponential decay estimates for the nonlinear Kirchhoff–Carrier wave equation in an annular with Robin–Dirichlet conditions”, Kyungpook Math. J., 61 (2021), 859–888 | MR | Zbl
[21] Li T., “Exact boundary controllability for quasilinear wave equations”, J. Comput. Appl. Math., 190 (2006), 127–135 | DOI | MR | Zbl
[22] Nakayama Y., “Liouville field theory: A decade after the revolution”, Int. J. Mod. Phys. A., 19:17–18 (2004), 2771–2930 | DOI | MR | Zbl
[23] Nguyen Huu Nhan, Le Thi Phuong Ngoc, Tran Minh Thuyet, Nguyen Thanh Long, “A Robin–Dirichlet problem for a nonlinear wave equation with the source term containing a nonlinear integral”, Lithuan. Math. J., 57:1 (2017), 80–108 | DOI | MR | Zbl
[24] Van Horssen W. T., Wang Y., Cao G., “On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients”, J. Sound Vibr., 424 (2018), 263–271 | DOI
[25] Wu X., Mei L., Liu C., “An analytical expression of solutions to nonlinear wave equations in higher dimensions with Robin boundary conditions”, J. Math. Anal. Appl., 426:2 (2015), 1164–1173 | DOI | MR | Zbl
[26] Xie Y., Tang J., “A unified method for solving sinh-Gordon-type equations”, Nuovo Cim., 121:2 (2006), 1373–1385 | MR