Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a2, author = {B. K. Buzdov}, title = {Models of cooling and freezing of living biological tissues with a flat ruler applicator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {30--36}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a2/} }
TY - JOUR AU - B. K. Buzdov TI - Models of cooling and freezing of living biological tissues with a flat ruler applicator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 30 EP - 36 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_232_a2/ LA - ru ID - INTO_2024_232_a2 ER -
%0 Journal Article %A B. K. Buzdov %T Models of cooling and freezing of living biological tissues with a flat ruler applicator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 30-36 %V 232 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_232_a2/ %G ru %F INTO_2024_232_a2
B. K. Buzdov. Models of cooling and freezing of living biological tissues with a flat ruler applicator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 30-36. http://geodesic.mathdoc.fr/item/INTO_2024_232_a2/
[1] Berezovskii A. A., “Odnomernaya lokalnaya zadacha Stefana ploskoparallelnoi kriodestruktsii biologicheskoi tkani”, Zadachi teploprovodnosti s podvizhnymi granitsami, In-t mat. AN USSR, Kiev, 1985, 3–8
[2] Berezovskii A. A., Prostranstvennaya lokalizatsiya kriovozdeistviya na biologicheskie tkani / Preprint # 87.60, In-t matematiki AN USSR, Kiev, 1987
[3] Berezovskii A. A., Leontev Yu. V., “Matematicheskoe prognozirovanie kriovozdeistviya na biologicheskie tkani”, Kriobiologiya., 1989, no. 3, 7–13
[4] Budak B. M., Soloveva E. N., Uspenskii A. B., Zh. vychisl. mat. mat. fiz., 5 (Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadachi Stefana), 828–840 | MR | Zbl
[5] Buzdov B. K., “Modelirovanie kriodestruktsii biologicheskoi tkani”, Mat. model., 23:3 (2011), 22–28 | MR
[6] Buzdov B. K., “Chislennoe issledovanie odnoi dvumernoi matematicheskoi modeli s peremennym koeffitsientom teploobmena, voznikayuschei v kriokhirurgii”, Sib. zh. industr. mat., 20:4 (2017), 22–28 | MR | Zbl
[7] Buzdov B. K., “Ob odnoi dvumernoi kraevoi zadache tipa Stefana, voznikayuschei v kriokhirurgii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 167 (2019), 20–26 | MR
[8] Zhmakin A. I., “Fizicheskie osnovy kriobiologii”, Usp. fiz. nauk., 178:3 (2008), 243–266 | DOI
[9] Samarskii A. A., “Lokalno-odnomernye raznostnye skhemy na neravnomernykh setkakh”, Zh. vychisl. mat. mat. fiz., 3:3 (1963), 431–466
[10] Samarskii A. A., Moiseenko B. D., “Ekonomicheskaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zh. vychisl. mat. mat. fiz., 5:5 (1965), 816–827
[11] Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting human forearm”, J. Appl. Physiol., 1 (1948), 93–102 | DOI