Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a0, author = {O. P. Barabash}, title = {Application of the projection-grid method for solving nonstationary problems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--12}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a0/} }
TY - JOUR AU - O. P. Barabash TI - Application of the projection-grid method for solving nonstationary problems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 3 EP - 12 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_232_a0/ LA - ru ID - INTO_2024_232_a0 ER -
%0 Journal Article %A O. P. Barabash %T Application of the projection-grid method for solving nonstationary problems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 3-12 %V 232 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_232_a0/ %G ru %F INTO_2024_232_a0
O. P. Barabash. Application of the projection-grid method for solving nonstationary problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2024_232_a0/
[1] Barabash O. P., “Nekotorye osobennosti realizatsii metoda konechnykh elementov dlya singulyarnogo differentsialnogo uravneniya”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2023, no. 2, 27–35
[2] Vinogradova G. A., “O reshenii singulyarnoi zadachi variatsionnym metodom”, Vestn. fak-ta PMM., 2015, no. 10, 39–42
[3] Gusman Yu. A., “Otsenki skhodimosti konechno-raznostnykh skhem dlya vyrozhdennykh ellipticheskikh uravnenii”, Zh. vychisl. mat. mat. fiz., 1965, no. 2, 351–357 | MR
[4] Emelyanov V. N., Vvedenie v teoriyu raznostnykh skhem, SPb., 2006
[5] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizodnykh s differentsialnymi operatorami tipa Besselya”, Mat. sb., 36 (78):2 (1955), 299–310
[6] Katrakhov V. V., “Metod konechnykh elementov dlya nekotorykh vyrozhdayuschikhsya ellipticheskikh kraevykh zadach”, Dokl. AN SSSR., 279:4 (1984), 799–802 | MR | Zbl
[7] Kipriyanov I. A., “Kraevye zadachi singulyarnykh ellipticheskikh operatorov v chastnykh proizvodnykh”, Dokl. AN SSSR., 195:1 (1970), 32–35 | Zbl
[8] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, Myu, 1977 | MR
[9] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, Myu, 1966
[10] Mikhlin S. G., “Nekotorye voprosy setochnoi approksimatsii i ikh prilozheniya k variatsionno-setochnomu metodu”, Variatsionno-raznostnye metody v matematicheskoi fizike, eds. Mikhlin S. G., VTs SO AN SSSR, Novosibirsk, 1973 | MR
[11] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, Myu, 1971
[12] Sitnik S. M., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019