Application of the projection-grid method for solving nonstationary problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to constructing approximate solutions of a parabolic differential equation with the Bessel operator. Solutions are sought in the form of a linear combination of piecewise continuous, compactly supported basis functions. The construction of the solution is performed in two stages. Initially, the approximation in a spatial variable is performed by using the Bubnov–Galerkin projection-grid method. Then the approximation in $t$ is carried out by using the finite-difference method. The resulting system of equations is solved by the tridiagonal matrix algorithm.
Keywords: Bessel operator, Bubnov–Galerkin method, finite functions, projection-grid method, finite-difference method
@article{INTO_2024_232_a0,
     author = {O. P. Barabash},
     title = {Application of the projection-grid method for solving nonstationary problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {232},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a0/}
}
TY  - JOUR
AU  - O. P. Barabash
TI  - Application of the projection-grid method for solving nonstationary problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 3
EP  - 12
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_232_a0/
LA  - ru
ID  - INTO_2024_232_a0
ER  - 
%0 Journal Article
%A O. P. Barabash
%T Application of the projection-grid method for solving nonstationary problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 3-12
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_232_a0/
%G ru
%F INTO_2024_232_a0
O. P. Barabash. Application of the projection-grid method for solving nonstationary problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2024_232_a0/

[1] Barabash O. P., “Nekotorye osobennosti realizatsii metoda konechnykh elementov dlya singulyarnogo differentsialnogo uravneniya”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2023, no. 2, 27–35

[2] Vinogradova G. A., “O reshenii singulyarnoi zadachi variatsionnym metodom”, Vestn. fak-ta PMM., 2015, no. 10, 39–42

[3] Gusman Yu. A., “Otsenki skhodimosti konechno-raznostnykh skhem dlya vyrozhdennykh ellipticheskikh uravnenii”, Zh. vychisl. mat. mat. fiz., 1965, no. 2, 351–357 | MR

[4] Emelyanov V. N., Vvedenie v teoriyu raznostnykh skhem, SPb., 2006

[5] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizodnykh s differentsialnymi operatorami tipa Besselya”, Mat. sb., 36 (78):2 (1955), 299–310

[6] Katrakhov V. V., “Metod konechnykh elementov dlya nekotorykh vyrozhdayuschikhsya ellipticheskikh kraevykh zadach”, Dokl. AN SSSR., 279:4 (1984), 799–802 | MR | Zbl

[7] Kipriyanov I. A., “Kraevye zadachi singulyarnykh ellipticheskikh operatorov v chastnykh proizvodnykh”, Dokl. AN SSSR., 195:1 (1970), 32–35 | Zbl

[8] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, Myu, 1977 | MR

[9] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, Myu, 1966

[10] Mikhlin S. G., “Nekotorye voprosy setochnoi approksimatsii i ikh prilozheniya k variatsionno-setochnomu metodu”, Variatsionno-raznostnye metody v matematicheskoi fizike, eds. Mikhlin S. G., VTs SO AN SSSR, Novosibirsk, 1973 | MR

[11] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, Myu, 1971

[12] Sitnik S. M., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019