On the asymptotic stability of one equation with a discrete retarded argument
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 83-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a functional differential equation with a discrete retarded argument, a constant delay, and a term without delay. The problem of the asymptotic stability of this equation is reduced to the problem of studying the spectrum of the operator of shift along trajectories. Simple coefficient necessary conditions for the asymptotic stability of this equation are obtained.
Keywords: functional differential equation, asymptotic stability, discrete retarded argument, hybrid system
@article{INTO_2024_231_a7,
     author = {M. V. Mulyukov},
     title = {On the asymptotic stability of one equation with a discrete retarded argument},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {83--88},
     publisher = {mathdoc},
     volume = {231},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a7/}
}
TY  - JOUR
AU  - M. V. Mulyukov
TI  - On the asymptotic stability of one equation with a discrete retarded argument
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 83
EP  - 88
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_231_a7/
LA  - ru
ID  - INTO_2024_231_a7
ER  - 
%0 Journal Article
%A M. V. Mulyukov
%T On the asymptotic stability of one equation with a discrete retarded argument
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 83-88
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_231_a7/
%G ru
%F INTO_2024_231_a7
M. V. Mulyukov. On the asymptotic stability of one equation with a discrete retarded argument. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 83-88. http://geodesic.mathdoc.fr/item/INTO_2024_231_a7/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[2] Kozlov R. I., Kozlova O. R., “Issledovanie ustoichivosti nelineinykh nepreryvno-diskretnykh modelei ekonomicheskoi dinamiki metodom VFL. I”, Izv. RAN. Teor. sist. upravl., 2009, no. 2, 104–113

[3] Kozlov R. I., Kozlova O. R., “Issledovanie ustoichivosti nelineinykh nepreryvno-diskretnykh modelei ekonomicheskoi dinamiki metodom VFL. II”, Izv. RAN. Teor. sist. upravl., 2009, no. 3, 41–50 | Zbl

[4] Marchenko V. M., Borkovskaya I. M., “Ustoichivost i stabilizatsiya lineinykh gibridnykh diskretno-nepreryvnykh statsionarnykh sistem”, Tr. BGTU. Fiz.-mat. nauki inform., 2012, no. 6, 7–10

[5] Simonov P. M., “K voprosu ob ustoichivosti sistemy dvukh lineinykh gibridnykh funktsionalno-differentsialnykh sistem s posledeistviem”, Vestn. ross. univ. Mat., 2020, no. 131 (25), 299–306 | Zbl

[6] Sabatulina T. L., Malygina V. V., “Nekotorye priznaki ustoichivosti lineinykh avtonomnykh differentsialnykh uravnenii s raspredelennym zapazdyvaniem”, Izv. vuzov. Mat., 2007, no. 6, 55–63 | MR

[7] Fridman E., “Stability of linear descriptor systems with delay: a Lyapunov-based approach”, J. Math. Anal. Appl., 2002, no. 1 (273), 24–44 | DOI | MR

[8] Branicky M. S., “Stability of hybrid systems: State of the art”, Proc. 36 IEEE Conf. on Decision and Control (San Diego, CA, USA, December 12, 1997), 1998, 120–125 | MR

[9] Bravyi E., Maksimov V., Simonov P., “Some economic dynamics problems for hybrid models with aftereffect”, Mathematics., 2020, no. 10 (8) | DOI

[10] De la Sen M., “Total stability properties based on fixed point theory for a class of hybrid dynamic systems”, Fixed Point Th. Appl., 2009 (2009), 826438 | DOI | MR | Zbl

[11] Marchenko V. M., Loiseau J. J., “On the stability of hybrid difference-differential systems”, Differ. Equations., 2009, no. 45, 743–756 | DOI | MR | Zbl

[12] Mulyukov M. V., “Necessary conditions of the stability of one hybrid system”, Mem. Differ. Equations Math. Phys., 87 (2022), 111–118 | MR | Zbl

[13] Seifert G., “Second-order neutral delay-differential equations with piecewise constant time dependence”, J. Math. Anal. Appl., 2003, no. 281, 1–9 | DOI | MR | Zbl

[14] Wiener J., Cooke K. L., “Oscillations in systems of differential equations with piecewise constant argument”, J. Math. Anal. Appl., 1989, no. 137, 221–239 | DOI | MR | Zbl

[15] Ye H., Michel A. N., Hou L., “Stability theory for hybrid dynamical systems”, IEEE Trans. Automat. Control., 1998, no. 4 (43) | MR