Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_231_a3, author = {I. M. Erusalimskyi and V. A. Skorokhodov and V. A. Rusakov}, title = {Maximum flow in parallel networks with connected arcs}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {44--52}, publisher = {mathdoc}, volume = {231}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a3/} }
TY - JOUR AU - I. M. Erusalimskyi AU - V. A. Skorokhodov AU - V. A. Rusakov TI - Maximum flow in parallel networks with connected arcs JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 44 EP - 52 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_231_a3/ LA - ru ID - INTO_2024_231_a3 ER -
%0 Journal Article %A I. M. Erusalimskyi %A V. A. Skorokhodov %A V. A. Rusakov %T Maximum flow in parallel networks with connected arcs %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 44-52 %V 231 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_231_a3/ %G ru %F INTO_2024_231_a3
I. M. Erusalimskyi; V. A. Skorokhodov; V. A. Rusakov. Maximum flow in parallel networks with connected arcs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 44-52. http://geodesic.mathdoc.fr/item/INTO_2024_231_a3/
[1] Vodolazov N. N., Issledovanie statsionarnykh i dinamicheskikh potokov v setyakh bez ogranichenii i s ogranicheniyami na dostizhimost, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Yaroslavskii gosudarstvennyi universitet im. P. G. Demidova, Yaroslavl, 2010
[2] Erusalimskii Ya. M., Skorokhodov V. A., “Potoki v setyakh so svyazannymi dugami”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki., 2003, no. 8, 9–12 | Zbl
[3] Kormen T., Leizerson Ch., Rivest R., Shtain K., Algoritmy: postroenie i analiz, Vilyams, M., 2005
[4] Skorokhodov V. A., “Potoki v obobschennykh setyakh so svyazannymi dugami”, Model. anal. inform. sist., 19:2 (2012), 41–52
[5] Erusalimskiy I. M., Rusakov V. A., “Some networks that allow splashes of dynamic flows and finding the maximum splash value”, J. Math. Sci., 271 (2023), 223–-232 | DOI | MR
[6] Ford L. R. Jr., Fulkerson D. R., Flows in Networks, Princeton Univ. Press, Princeton, 2010 | MR
[7] Goldberg A. P., Tarjan R. E., “Efficient maximum flow algorithms”, Commun. ACM., 57:8 (2014), 82–89 | DOI
[8] Newman M., Networks: An Introduction, Oxford Univ. Press, New York, 2010 | MR