Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_231_a1, author = {N. A. Baranov}, title = {Analytical estimates of the accuracy of wind profile reconstruction from lidar scanning data}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {13--26}, publisher = {mathdoc}, volume = {231}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a1/} }
TY - JOUR AU - N. A. Baranov TI - Analytical estimates of the accuracy of wind profile reconstruction from lidar scanning data JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 13 EP - 26 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_231_a1/ LA - ru ID - INTO_2024_231_a1 ER -
%0 Journal Article %A N. A. Baranov %T Analytical estimates of the accuracy of wind profile reconstruction from lidar scanning data %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 13-26 %V 231 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_231_a1/ %G ru %F INTO_2024_231_a1
N. A. Baranov. Analytical estimates of the accuracy of wind profile reconstruction from lidar scanning data. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 13-26. http://geodesic.mathdoc.fr/item/INTO_2024_231_a1/
[30] Bakhvalov N. S., Chislennye metody (analiz, algebra, obyknovennye differentsialnye uravneniya), Nauka, M., 1975
[31] Zorich V. A., Matematicheskii analiz. Ch. 1, Izd-vo MTsNMO, M., 20112 | MR
[32] Achtert P., Brooks I. M., Brooks B. J., Moat B. I., Prytherch J., Persson P. O. G., Tjernström M., “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar”, Atm. Meas. Tech., 2015, no. 8, 4993–5007 | DOI
[33] Banakh V. A., Smalikho I. N., “Measurements of turbulent energy dissipation rate with a CW Doppler lidar in the atmospheric boundary layer”, J. Atm. Ocean. Techn., 16 (1999), 1044–1061 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[34] Baranov N., “Algorithms of 3d wind field reconstructing by lidar remote sensing data”, Numerical Computations: Theory and Algorithms, v. 11974, Springer, Crotone, 2020, 306–313
[35] Benjamin S. G., Schwartz B. E., Szoke E. J., Koch S. E., “The value of wind profiler data in U.S. Weather forecasting”, Bull. Am. Meteorol. Soc., 85:12 (2004), 1871–1886 | DOI
[36] Bingöl F., Mann J., Foussekis D., “Conically scanning lidar error in complex terrain”, Meteorol. Z., 18 (2009), 189–195 | DOI
[37] Buzdugan L., Stefan S., “A comparative study of sodar, lidar wind measurements and aircraft derived wind observations”, Roman. J. Physics., 65 (2020), 1–15 | MR
[38] Chen C. Y., Yeh N. C., Lin C. Y., “Data assimilation of Doppler wind lidar for the extreme rainfall event prediction over Northern Taiwan: A case study”, Atmosphere., 13:6 (2022), 987 | DOI
[39] Davies F., Collier C. G., Bozier K. E., Pearson G. N., “On the accuracy of retrieved wind information from doppler lidar observations”, Quart. J. Roy. Meteorol. Soc., 129 (2003), 321–334 | DOI
[40] Filioglou M., Preissler J., Troiville A., Thobois L., Vakkari V., Auvinen M., Fortelius C., Gregow E., Hämäläinen K., Hellsten A., Järvi L., O'Connor E., Schönach D., Hirsikko A., “Evaluating modelled winds over an urban area using ground-based Doppler lidar observations”, Meteorol. Appl., 29:2 (2022), 2052 | DOI
[41] Guo F., Schlipf D., Cheng P. W., “Evaluation of lidar-assisted wind turbine control under various turbulence characteristics”, Wind Energy Sci., 8:2 (2023), 149–171 | DOI
[42] Kim A. A., Orlov A. V., Luginya V. S., Baranov N. A., “About the methodology and tools for meteo lidar metrological support”, Proc. 26 Int. Symp. on Atmospheric and Ocean Optics, Atmospheric Physics (Moscow, June29 — July 3, 2020), SPIE, 2020, 457–467
[43] Kumer V. M., Reuder J., Furevik B. R., “A comparison of lidar and radiosonde wind measurements”, Energy Proc., 53 (2014), 214–220 | DOI
[44] Lane S. Barlow J., Wood C., “An assessment of a three-beam doppler lidar wind profiling method for use in urban areas”, J. Wind Eng. Industr. Aerodyn., 119 (2013), 53–59 | DOI
[45] Lang S., McKeogh E., “Lidar and sodar measurements of wind speed and direction in upland terrain for wind energy purposes”, Remote Sensing., 2011, no. 3, 1871–1901 | DOI
[46] LIDAR Applications to Wind Energy Technology Assessment, EPRI, 2011
[47] Lin H., Sun J., Weckwerth T. M., Joseph E., Kay, “Assimilation of New York State Mesonet Surface and Profiler Data for the 21 June 2021 Convective Event”, Mon. Weather Rev., 151 (2023), 485–507 | DOI
[48] Lindelöw P. J. P., Upwind D1. Uncertainties in wind assessment with LIDAR, Danmarks Tekniske Universitet, Denmark, 2009
[49] Liu Z., Barlow J. F., Chan P. W., Fung J. C. H., Li Y., Ren C., Mak H. W. L., Ng E., “A review of progress and applications of pulsed doppler wind lidars”, Remote Sensing., 11:21 (2019), 2522 | DOI
[50] Liu H., Yuan L., Fan C., Liu F., Zhang X., Zhu X., Liu J., Zhu X., Chen W., “Performance validation on an all-fiber 1.54-$\mu$ m pulsed coherent doppler lidar for wind-profile measurement”, Opt. Eng., 59 (2020), 1–11 | MR
[51] Mann J., Angelou N., Arnqvist J., Callies D., Cantero E., Arroyo R. C., Courtney M., Cuxart J., Dellwik E., Gottschall J., Ivanell S., Kühn P., Lea G., Matos J. C., Palma J. M. L. M., Pauscher L., Pea A., Rodrigo J. Sanz, Söderberg S., Vasiljevic N., Rodrigues C. V., “Complex terrain experiments in the New European Wind AtlasPhil”, Trans. Roy. Soc. A., 375 (2017), 20160101
[52] Mikkelsen T., “Lidar-based research and innovation at DTU wind energy — A Review”, J. Phys. Conf. Ser., 524:1 (2014), 012007 | DOI
[53] Ng C. W., Hon K. K., “Fast dual-doppler LiDAR retrieval of boundary layer wind profiles”, Weather., 77:4 (2022), 134–142 | DOI
[54] Pichault M., Vincent C., Skidmore G., Monty J., “Short-term wind power forecasting at the wind farm scale using long-range Doppler LiDAR”, Energies., 14:9 (2021), 2663 | DOI
[55] Sauvage L., Jaeckel S., Dabas A., Cariou J.-P., Martucci G., Hardesty M., Lehman V., Dehuu M., Air quality — Environmental meteorology — Part 2: Ground-based remote sensing of wind by heterodyne pulsed Doppler lidar, ISO TC146/SC5:WG6/DIS 28902-2, 2015
[56] Shimada S., Kogaki T., Konagaya M., Mito T., Araki R., Ueda Y., Ohsawa T., “Validation of near-shore wind measurements using a dual scanning light detection and ranging system”, Wind Energy., 25:9 (2022), 1555–1572 | DOI
[57] Shrestha B., Brotzge J. A., Wang J., “Evaluation of the New York State Mesonet Profiler Network data”, Atm. Meas. Tech., 15:20 (2022), 6011–6033 | DOI
[58] Wang C., Chen Y., Chen M., Shen J., “Data assimilation of a dense wind profiler network and its impact on convective forecasting”, Atm. Res., 238 (2020), 104880 | DOI
[59] Zhou Z., Bu Z., “Wind measurement comparison of doppler lidar with wind cup and l band sounding radar”, Atm. Meas. Tech. Disc., 2021, 1–17