Tensor invariants of geodesic, potential and dissipative systems. IV. Systems on tangents bundles of $n$-dimensional manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 96-130
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we present tensor invariants (first integrals and differential forms) for dynamical systems on the tangent bundles of smooth $n$-dimensional manifolds separately for $n=1$, $n=2$, $n=3$, $n=4$, and for any finite $n$. We demonstrate the connection between the existence of these invariants and the presence of a full set of first integrals that are necessary for integrating geodesic, potential, and dissipative systems. The force fields acting in systems considered make them dissipative (with alternating dissipation).
The first part of the paper: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 227 (2023), pp. 100–128.
The second part of the paper: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 228 (2023), pp. 92–118.
The third part of the paper: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 229 (2023), pp. 90–119.
Keywords:
dynamical system, integrability, dissipation, transcendental first integral, invariant differential form
@article{INTO_2023_230_a8,
author = {M. V. Shamolin},
title = {Tensor invariants of geodesic, potential and dissipative systems. {IV.} {Systems} on tangents bundles of $n$-dimensional manifolds},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {96--130},
publisher = {mathdoc},
volume = {230},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a8/}
}
TY - JOUR AU - M. V. Shamolin TI - Tensor invariants of geodesic, potential and dissipative systems. IV. Systems on tangents bundles of $n$-dimensional manifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 96 EP - 130 VL - 230 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_230_a8/ LA - ru ID - INTO_2023_230_a8 ER -
%0 Journal Article %A M. V. Shamolin %T Tensor invariants of geodesic, potential and dissipative systems. IV. Systems on tangents bundles of $n$-dimensional manifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 96-130 %V 230 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_230_a8/ %G ru %F INTO_2023_230_a8
M. V. Shamolin. Tensor invariants of geodesic, potential and dissipative systems. IV. Systems on tangents bundles of $n$-dimensional manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 96-130. http://geodesic.mathdoc.fr/item/INTO_2023_230_a8/