Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 88-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a nonclassical mathematical model that describes the mechanical point contact of a composite body with an obstacle of special geometry. The nonlinearity of the model is due to inequality-type conditions within the framework of the corresponding variational problem. An optimal control problem is formulated in which the controls are functions of external loads, and the cost functional is specified using a weakly upper semi-continuous functional defined on the Sobolev space. The solvability of the optimal control problem is proved. For the sequence of solutions corresponding to the maximizing sequence, the strong convergence in the corresponding Sobolev space is proved.
Keywords: rigid inclusion, non-penetration condition, variational problem
@article{INTO_2023_230_a7,
     author = {N. P. Lazarev and G. M. Semenova and E. S. Efimova},
     title = {Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {88--95},
     publisher = {mathdoc},
     volume = {230},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - G. M. Semenova
AU  - E. S. Efimova
TI  - Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 88
EP  - 95
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/
LA  - ru
ID  - INTO_2023_230_a7
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A G. M. Semenova
%A E. S. Efimova
%T Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 88-95
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/
%G ru
%F INTO_2023_230_a7
N. P. Lazarev; G. M. Semenova; E. S. Efimova. Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 88-95. http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/

[1] Lazarev N. P., Fedotov E. D., “Trekhmernaya zadacha tipa Sinorini dlya kompozitnykh tel, kontaktiruyuschikh ostrymi granyami zhestkikh vklyuchenii”, Chelyab. fiz.-mat. zh., 7:4 (2022), 412–423 | DOI | MR | Zbl

[2] Namm R. V., Tsoi G. I., “Reshenie kontaktnoi zadachi teorii uprugosti s zhestkim vklyucheniem”, Zh. vychisl. mat. mat. fiz., 59:4 (2019), 699–706 | DOI | MR | Zbl

[3] Nikolaeva N. A., “O ravnovesii uprugikh tel s treschinami, peresekayuschimi tonkie vklyucheniya”, Sib. zh. industr. mat., 22:4 (2019), 68–80

[4] Popova T. S., “Zadacha o kontakte vyazkouprugoi plastiny s uprugoi balkoi”, Sib. zh. industr. mat., 19:3 (2016), 41–54 | Zbl

[5] Rudoi E. M., Khludnev A. M., “Odnostoronnii kontakt plastiny s tonkim uprugim prepyatstviem”, Sib. zh. industr. mat., 12:2 (2009), 120–130 | MR | Zbl

[6] Furtsev A. I., “O kontakte tonkogo prepyatstviya i plastiny, soderzhaschei tonkoe vklyuchenie”, Sib. zh. chist. prikl. mat., 17:4 (2017), 94–111 | MR | Zbl

[7] Furtsev A. I., “Zadacha o kontakte plastiny i balki pri nalichii stsepleniya”, Sib. zh. industr. mat., 22:2 (2019), 105–117 | MR | Zbl

[8] Khludnev A. M., “Optimalnoe upravlenie plastinoi nad prepyatstviem”, Sib. mat. zh., 31:1 (1990), 172–178 | MR

[9] Khludnev A. M., Popova T. S., “Ob ierarkhii tonkikh vklyuchenii v uprugikh telakh”, Mat. zametki SVFU., 23:1 (2016), 87–107 | Zbl

[10] Andersson L. E., Klarbring A., “A review of the theory of elastic and quasistatic contact problems in elasticity”, Phil. Trans. Roy. Soc. Lond. Ser. A., 359 (2001), 2519–2539 | DOI | MR | Zbl

[11] Fichera G., “Existence Theorems in Elasticity”, Linear Theories of Elasticity and Thermoelasticity, eds. Truesdell C., Springer, Berlin–Heidelberg, 1973, 347–-389 | DOI | MR

[12] Homberg D., Khludnev A., “A thermoelastic contact problem with a phase transition”, IMA J. Appl. Math., 71:4 (2006), 479–495 | DOI | MR | Zbl

[13] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[14] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech. A. Solids., 29:3 (2010), 392–399 | DOI | MR | Zbl

[15] Khludnev A. M., “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83 (2013), 1493–1509 | DOI | Zbl

[16] Khludnev A. M., Hoffmann K. H., Botkin N. D., “The variational contact problem for elastic objects of different dimensions”, Sib. Math. J., 47 (2006), 584–593 | DOI | MR | Zbl

[17] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[18] Khludnev A., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33 (2010), 1955–1967 | MR | Zbl

[19] Kikuchi N., Oden J. T., Contact Problems in Elasticity: Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988 | MR | Zbl

[20] Kovtunenko V. A., “Quasi-variational inequality for the nonlinear indentation problem: a power-law hardening model”, Phil. Trans. Roy. Soc. A., 380:2236 (2022), 20210362 | DOI | MR

[21] Lazarev N., “Inverse problem for cracked inhomogeneous Kirchhoff-Love plate with two hinged rigid inclusions”, Boundary-Value Probl., 2021, no. 1, 88 | DOI | MR | Zbl

[22] Lazarev N. P., Kovtunenko V. A., “Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions”, Mathematics., 10:2 (2022), 250 | DOI | MR

[23] Pyatkina E. V., “A contact problem for two plates of the same shape glued along one edge of a crack”, J. Appl. Ind. Math., 12:2 (2018), 334–346 | DOI | MR | Zbl

[24] Rademacher A., Rosin K., “Adaptive optimal control of Signorini's problem”, Comput. Optim. Appl., 70 (2018), 531–569 | DOI | MR | Zbl