Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 88-95

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a nonclassical mathematical model that describes the mechanical point contact of a composite body with an obstacle of special geometry. The nonlinearity of the model is due to inequality-type conditions within the framework of the corresponding variational problem. An optimal control problem is formulated in which the controls are functions of external loads, and the cost functional is specified using a weakly upper semi-continuous functional defined on the Sobolev space. The solvability of the optimal control problem is proved. For the sequence of solutions corresponding to the maximizing sequence, the strong convergence in the corresponding Sobolev space is proved.
Keywords: rigid inclusion, non-penetration condition, variational problem
@article{INTO_2023_230_a7,
     author = {N. P. Lazarev and G. M. Semenova and E. S. Efimova},
     title = {Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {88--95},
     publisher = {mathdoc},
     volume = {230},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - G. M. Semenova
AU  - E. S. Efimova
TI  - Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 88
EP  - 95
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/
LA  - ru
ID  - INTO_2023_230_a7
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A G. M. Semenova
%A E. S. Efimova
%T Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 88-95
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/
%G ru
%F INTO_2023_230_a7
N. P. Lazarev; G. M. Semenova; E. S. Efimova. Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 88-95. http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/