Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_230_a7, author = {N. P. Lazarev and G. M. Semenova and E. S. Efimova}, title = {Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {88--95}, publisher = {mathdoc}, volume = {230}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/} }
TY - JOUR AU - N. P. Lazarev AU - G. M. Semenova AU - E. S. Efimova TI - Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 88 EP - 95 VL - 230 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/ LA - ru ID - INTO_2023_230_a7 ER -
%0 Journal Article %A N. P. Lazarev %A G. M. Semenova %A E. S. Efimova %T Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 88-95 %V 230 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/ %G ru %F INTO_2023_230_a7
N. P. Lazarev; G. M. Semenova; E. S. Efimova. Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 88-95. http://geodesic.mathdoc.fr/item/INTO_2023_230_a7/
[1] Lazarev N. P., Fedotov E. D., “Trekhmernaya zadacha tipa Sinorini dlya kompozitnykh tel, kontaktiruyuschikh ostrymi granyami zhestkikh vklyuchenii”, Chelyab. fiz.-mat. zh., 7:4 (2022), 412–423 | DOI | MR | Zbl
[2] Namm R. V., Tsoi G. I., “Reshenie kontaktnoi zadachi teorii uprugosti s zhestkim vklyucheniem”, Zh. vychisl. mat. mat. fiz., 59:4 (2019), 699–706 | DOI | MR | Zbl
[3] Nikolaeva N. A., “O ravnovesii uprugikh tel s treschinami, peresekayuschimi tonkie vklyucheniya”, Sib. zh. industr. mat., 22:4 (2019), 68–80
[4] Popova T. S., “Zadacha o kontakte vyazkouprugoi plastiny s uprugoi balkoi”, Sib. zh. industr. mat., 19:3 (2016), 41–54 | Zbl
[5] Rudoi E. M., Khludnev A. M., “Odnostoronnii kontakt plastiny s tonkim uprugim prepyatstviem”, Sib. zh. industr. mat., 12:2 (2009), 120–130 | MR | Zbl
[6] Furtsev A. I., “O kontakte tonkogo prepyatstviya i plastiny, soderzhaschei tonkoe vklyuchenie”, Sib. zh. chist. prikl. mat., 17:4 (2017), 94–111 | MR | Zbl
[7] Furtsev A. I., “Zadacha o kontakte plastiny i balki pri nalichii stsepleniya”, Sib. zh. industr. mat., 22:2 (2019), 105–117 | MR | Zbl
[8] Khludnev A. M., “Optimalnoe upravlenie plastinoi nad prepyatstviem”, Sib. mat. zh., 31:1 (1990), 172–178 | MR
[9] Khludnev A. M., Popova T. S., “Ob ierarkhii tonkikh vklyuchenii v uprugikh telakh”, Mat. zametki SVFU., 23:1 (2016), 87–107 | Zbl
[10] Andersson L. E., Klarbring A., “A review of the theory of elastic and quasistatic contact problems in elasticity”, Phil. Trans. Roy. Soc. Lond. Ser. A., 359 (2001), 2519–2539 | DOI | MR | Zbl
[11] Fichera G., “Existence Theorems in Elasticity”, Linear Theories of Elasticity and Thermoelasticity, eds. Truesdell C., Springer, Berlin–Heidelberg, 1973, 347–-389 | DOI | MR
[12] Homberg D., Khludnev A., “A thermoelastic contact problem with a phase transition”, IMA J. Appl. Math., 71:4 (2006), 479–495 | DOI | MR | Zbl
[13] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl
[14] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech. A. Solids., 29:3 (2010), 392–399 | DOI | MR | Zbl
[15] Khludnev A. M., “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83 (2013), 1493–1509 | DOI | Zbl
[16] Khludnev A. M., Hoffmann K. H., Botkin N. D., “The variational contact problem for elastic objects of different dimensions”, Sib. Math. J., 47 (2006), 584–593 | DOI | MR | Zbl
[17] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000
[18] Khludnev A., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33 (2010), 1955–1967 | MR | Zbl
[19] Kikuchi N., Oden J. T., Contact Problems in Elasticity: Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988 | MR | Zbl
[20] Kovtunenko V. A., “Quasi-variational inequality for the nonlinear indentation problem: a power-law hardening model”, Phil. Trans. Roy. Soc. A., 380:2236 (2022), 20210362 | DOI | MR
[21] Lazarev N., “Inverse problem for cracked inhomogeneous Kirchhoff-Love plate with two hinged rigid inclusions”, Boundary-Value Probl., 2021, no. 1, 88 | DOI | MR | Zbl
[22] Lazarev N. P., Kovtunenko V. A., “Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions”, Mathematics., 10:2 (2022), 250 | DOI | MR
[23] Pyatkina E. V., “A contact problem for two plates of the same shape glued along one edge of a crack”, J. Appl. Ind. Math., 12:2 (2018), 334–346 | DOI | MR | Zbl
[24] Rademacher A., Rosin K., “Adaptive optimal control of Signorini's problem”, Comput. Optim. Appl., 70 (2018), 531–569 | DOI | MR | Zbl