On the proximate growth function relative to the model growth function
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 56-74

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of proximate order is widely used in the theories of integer, meromorphic, subharmonic, and plurisubharmonic functions. In this paper, we provide a general interpretation of this concept as a proximate growth function relative to the model growth function. The classical proximate order is the proximate order in the sense of Valiron. Our definition uses only one condition. This form of definition is new for the classical proximate order. In this review, we show that for any function defined on a positive ray whose growth is determined by a model growth function, there is a proximate growth function relative to the model growth function.
Mots-clés : Hadamard problem
Keywords: model growth function, proximate order, convex function, entire function, subharmonic function.
@article{INTO_2023_230_a5,
     author = {M. V. Kabanko and K. G. Malyutin and B. N. Khabibullin},
     title = {On the proximate growth function relative to the model growth function},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {56--74},
     publisher = {mathdoc},
     volume = {230},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a5/}
}
TY  - JOUR
AU  - M. V. Kabanko
AU  - K. G. Malyutin
AU  - B. N. Khabibullin
TI  - On the proximate growth function relative to the model growth function
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 56
EP  - 74
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_230_a5/
LA  - ru
ID  - INTO_2023_230_a5
ER  - 
%0 Journal Article
%A M. V. Kabanko
%A K. G. Malyutin
%A B. N. Khabibullin
%T On the proximate growth function relative to the model growth function
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 56-74
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_230_a5/
%G ru
%F INTO_2023_230_a5
M. V. Kabanko; K. G. Malyutin; B. N. Khabibullin. On the proximate growth function relative to the model growth function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 56-74. http://geodesic.mathdoc.fr/item/INTO_2023_230_a5/