On the proximate growth function relative to the model growth function
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 56-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of proximate order is widely used in the theories of integer, meromorphic, subharmonic, and plurisubharmonic functions. In this paper, we provide a general interpretation of this concept as a proximate growth function relative to the model growth function. The classical proximate order is the proximate order in the sense of Valiron. Our definition uses only one condition. This form of definition is new for the classical proximate order. In this review, we show that for any function defined on a positive ray whose growth is determined by a model growth function, there is a proximate growth function relative to the model growth function.
Mots-clés : Hadamard problem
Keywords: model growth function, proximate order, convex function, entire function, subharmonic function.
@article{INTO_2023_230_a5,
     author = {M. V. Kabanko and K. G. Malyutin and B. N. Khabibullin},
     title = {On the proximate growth function relative to the model growth function},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {56--74},
     publisher = {mathdoc},
     volume = {230},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a5/}
}
TY  - JOUR
AU  - M. V. Kabanko
AU  - K. G. Malyutin
AU  - B. N. Khabibullin
TI  - On the proximate growth function relative to the model growth function
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 56
EP  - 74
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_230_a5/
LA  - ru
ID  - INTO_2023_230_a5
ER  - 
%0 Journal Article
%A M. V. Kabanko
%A K. G. Malyutin
%A B. N. Khabibullin
%T On the proximate growth function relative to the model growth function
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 56-74
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_230_a5/
%G ru
%F INTO_2023_230_a5
M. V. Kabanko; K. G. Malyutin; B. N. Khabibullin. On the proximate growth function relative to the model growth function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 56-74. http://geodesic.mathdoc.fr/item/INTO_2023_230_a5/

[1] Braichev G. G., Ekstremalnye zadachi v teorii otnositelnogo rosta vypuklykh i tselykh funktsii, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk., MPGU, M., 2018

[2] Braichev G. G., “Ob odnoi probleme Adamara i sglazhivanii vypuklykh funktsii”, Vladikavkaz. mat. zh., 7:3 (2005), 11–25 | MR

[3] Braichev G. G., Vvedenie v teoriyu rosta vypuklykh i tselykh funktsii, Prometei, M., 2005

[4] Grishin A. F., Subgarmonicheskie funktsii konechnogo poryadka, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk., KhGU, Kharkov, 1992

[5] Grishin A. F., Malyutina T. I., “Ob utochnennom poryadke”, Kompleksnyi analiz i matematicheskaya fizika, eds. Kytmanov A. M., KGU, Krasnoyarsk, 1998, 10–24

[6] Grishin A. F., Poedintseva I. V., “Abelevy i tauberovy teoremy dlya integralov”, Algebra i analiz., 26:3 (2014), 1–88 | MR

[7] Kazmin Yu. A., “Sravneniya funktsii”, Matematicheskaya entsiklopediya, Sovetskaya entsiklopediya, M., 1985 | Zbl

[8] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[9] Maergoiz L. S., “Indikatornaya diagramma tseloi funktsii utochnennogo poryadka i ee obobschennye preobrazovaniya Borelya—Laplasa”, Algebra i analiz., 12:2 (2000), 1–63 | Zbl

[10] Oskolkov V. A., “O nekotorykh voprosakh teorii tselykh funktsii”, Mat. sb., 184:1 (1993), 129–148 | Zbl

[11] Popov A. Yu., “Ob obraschenii obobschennogo preobrazovaniya Borelya”, Fundam. prikl. mat., 5:3 (1999), 817–841 | MR | Zbl

[12] Tarov V. A., “Gladko menyayuschiesya funktsii i sovershennye utochnennye poryadki”, Mat. zametki., 76:2 (2004), 258–264 | DOI | MR | Zbl

[13] Khabibullin B. N., “Obobschenie utochnennogo poryadka”, Dokl. Bashkir. un-ta., 5:1 (2020), 1–5

[14] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[15] Sheremeta M. N., “O svyazi mezhdu rostom maksimuma modulya tseloi funktsii i modulyami koeffitsientov ee stepennogo razlozheniya”, Izv. vuzov. Mat., 2 (1967), 100–108

[16] Sheremeta M. N., “O svyazi mezhdu rostom tselykh ili analiticheskikh v kruge funktsii nulevogo poryadka i koeffitsientami ikh stepennykh razlozhenii”, Izv. vuzov. Mat., 6 (1968), 115–121 | Zbl

[17] Borel E., Lessons sur les fonctions entières, v. 2, Gauthier-Vilars, Paris, 1921

[18] Earl J. P., Hayman W. K., “Smooth majorants for functions of arbitrarily rapid growth”, Math. Proc. Camb. Phil. Soc., 109:3 (1991), 565–569 | DOI | MR | Zbl

[19] Hadamard J., “Essai d‘étude des fonctions données par leur dévéloppement de Taylor”, J. Math. Pure Appl., 8:2 (1892), 154–186

[20] Hörmander L., Notions of Convexity, Birkhäuser, Boston, 1994 | MR | Zbl

[21] Kiselman C. O., “Order and type as measures of growth for convex or entire functions”, Proc. London Math. Soc. (3)., 66:1 (1993), 152–186 | DOI | MR | Zbl

[22] Poincaré H., “Theorie spectrale pour des operateurs elliptiques”, Bull. S.M.F., 11 (1883), 136–144

[23] Ransford Th., Potential Theory in the Complex Plane, Cambrige Univ. Press, Cambridge, 1995 | MR | Zbl

[24] Taylor A. E., “L'Hospital's Rule”, Am. Math. Month., 59:1 (1952), 20–24 | DOI | MR | Zbl

[25] Valiron G., “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance régulière”, Ann. Fac. Sci. Toulouse., 5:3 (1913), 117–257 | DOI | MR