Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 8-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ of $2\pi$-periodic functions of several variables, the best “angular” approximation of such functions by trigonometric polynomials, and the mixed smoothness modulus of functions from this space. The properties of the mixed smoothness modulus are given and strengthened versions of the direct and inverse theorems on the “angular” approximations are proved.
Keywords: Lorentz space, trigonometric polynomial, best “angular” approximation, smoothness modulus
@article{INTO_2023_230_a1,
     author = {G. A. Akishev},
     title = {Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the {Lorentz} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {8--24},
     publisher = {mathdoc},
     volume = {230},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 8
EP  - 24
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/
LA  - ru
ID  - INTO_2023_230_a1
ER  - 
%0 Journal Article
%A G. A. Akishev
%T Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 8-24
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/
%G ru
%F INTO_2023_230_a1
G. A. Akishev. Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 8-24. http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/

[1] Akishev G., “Otsenki nailuchshikh priblizhenii funktsii klassa logarifmicheskoi gladkosti v prostranstve Lorentsa”, Tr. IMM UrO RAN., 23:3 (2017), 3–21 | MR

[2] Akishev G., “Otsenki nailuchshikh priblizhenii funktsii klassa Nikolskogo"– Besova v prostranstve Lorentsa trigonometricheskimi polinomami”, Tr. IMM UrO RAN., 26:2 (2020), 5–27 | MR

[3] Akishev G., “Neravenstva dlya nailuchshego priblizheniya «uglom» i modulya gladkosti funktsii v prostranstve Lorentsa”, Mat. Mezhdunar. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXIV» (Voronezh, 3–9 maya 2023 g.), VGU, Voronezh, 2023, 37–38

[4] Amanov T. I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976 | MR

[5] Akhiezer N. I., Lektsii po teorii approksimatsii, Gostekhizdat, M., 1947 | MR

[6] Babenko A. G., “O v neravenstve Dzheksona—Stechkina dlya nailuchshikh $L^{2}$-priblizhenii funktsii trigonometricheskimi polinomami”, Tr. In-ta mat. mekh. UrO RAN., 7:1 (2001), 30–46 | MR

[7] Berdyshev V. I., “O teoreme Dzheksona v $L_{p}$”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 88 (1967), 3–16 | MR | Zbl

[8] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[9] Bugrov Ya. S., “Priblizhenie trigonometricheskimi polinomami funktsii mnogikh peremennykh”, Trudy nauchnogo ob'edineniya prepodavatelei fiziko-matematicheskikh fakultetov pedagogicheskikh institutov Dalnego Vostoka. T. 1, Khabarovsk, 1962, 1–28

[10] Ivanov V. I., “Pryamye i obratnye teoremy teorii priblizheniya v metrike $Lp$ dlya $0

1$”, Mat. zametki., 56:2 (1975), 15–40

[11] Ivanov V. I., “Pryamye i obratnye teoremy teorii priblizheniya periodicheskikh funktsii v rabotakh S. B. Stechkina i ikh razvitie”, Tr. IMM UrO RAN., 16:4 (2010), 5–17

[12] Ivanov V. I., “Konstanty Dzheksona i konstanty Yunga v vektornykh $L_{p}$-prostranstvakh”, Izv. Tulsk. gos. un-ta., 1:1 (1995), 67–85 | MR

[13] Ivanov V. I., Smirnov O. I., Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_{p}$, TulGU, Tula, 1995

[14] Koneichuk N. P., “Tochnaya konstanta v neravenstve D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnykh periodicheskikh funktsii”, Dokl. AN SSSR., 145:3 (1962), 314–315

[15] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[16] Novikov S. Ya., Posledovatelnosti funktsii v simmetrichnykh prostranstvakh, Samar. un-t, Samara, 2008

[17] Potapov M. K., “O priblizhenii «uglom»”, Proc. Conf. Constructive Theory of Functions, Akad. Kiado, Budapesht, 1972, 371–399

[18] Potapov M. K., “Priblizhenie «uglom» i teoremy vlozheniya”, Math. Balkan., 2 (1972), 183–198 | MR | Zbl

[19] Potapov M. K., “Izuchenie nekotorykh klassov funktsii pri pomoschi priblizheniya «uglom»”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 117 (1972), 256–291 | Zbl

[20] Runovskii K. V., “Pryamaya teorema teorii priblizhenii dlya obschego modulya gladkosti”, Mat. zametki., 95:6 (2014), 899–910 | DOI | Zbl

[21] Runovskii K. V., Omelchenko N. V., “Smeshannyi obobschennyi modul gladkosti i priblizhenie «uglom» iz trigonometricheskikh polinomov”, Mat. zametki., 100:3 (2016), 421–432 | DOI | MR | Zbl

[22] Smailov E. S., Esmaganbetov M. G., Shayakhmetova B. K., “O differentsialnykh svoistvakh funktsii v $L_{p_{1}, p_{2}}[0, 2\pi]^{2}$”, Sb. nauch. tr. «Sovremennye voprosy teorii funktsii i funktsionalnogo analiza», Karaganda, 1988, 86–100

[23] Smirnov O. I., “Priblizhenie v prostranstve $L_{p}(\mathbb{T}^{m})$ «uglom»”, Izv. Tulsk. gos. un-ta., 1:1 (1995), 116–123 | MR

[24] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974

[25] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15:3 (1951), 219–242 | Zbl

[26] Stechkin S. B., “O teoreme Kolmogorova—Seliverstova”, Izv. AN SSSR. Ser. mat., 17:6 (1953), 499–512 | MR | Zbl

[27] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0

1$”, Mat. sb., 98:3 (1975), 395–415 | MR | Zbl

[28] Storozhenko E. A., Osvald P., “Teoremy Dzheksona v prostranstvakh $L_p(R^{n})$, $0

1$”, Sib. mat. zh., 19:4 (1978), 888–901 | MR | Zbl

[29] Timan M. F., “Osobennosti osnovnykh teorem konstruktivnoi teorii funktsii v prostranstvakh $L_{p}$”, AN Azerb. SSR., 1965, 18–25 | Zbl

[30] Timan M. F., “O teoreme Dzheksona v prostranstvakh $L_p$”, Ukr. mat. zh., 1 (1966), 134–137 | Zbl

[31] Timan A. F., Timan M. F., “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR., 71 (1950), 17–19

[32] Timan M. F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_{p}$”, Mat. sb., 46:1 (1958), 125–132 | Zbl

[33] Chernykh N. I., “O neravenstve Dzheksona v $L_{p}(0, 2\pi)$ s tochnoi konstantoi”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 198 (1992), 232–241 | Zbl

[34] Akgun R., “Approximation by polynomials in rearrangement invariant quasi Banach function spaces”, Banach J. Math. Anal., 6:2 (2012), 113–131 | DOI | MR | Zbl

[35] Gogatishvili A., Opic B., Tikhonov S., Trebels W., “Ulyanov-type inequalities between Lorentz–Zygmund spaces”, J. Fourier Anal. Appl., 20 (2014), 1020–1049 | DOI | MR | Zbl

[36] Creekmore J., “Type and cotype in Lorentz $L_{p,q}$ spaces”, Proc. Kön. Ned. Akad. Wetensch., 84:2 (1981), 145–152 | MR

[37] Gurbea G. P., Cuerva J., Perez C.,, “Extrapolation with weights, rearrangement function spaces, modular inequalities and applications to singular integrals”, Adv. Math., 203 (2006), 256–318 | DOI | MR

[38] Yurt H., Guven A., “Multivariate approximation theorems in weighted Lorentz spaces”, Mediterr. J. Math., 12 (2015), 863–876 | DOI | MR | Zbl

[39] Jackson D., Über die Genauigkeit der Annaheruny stetiger Funktionen durch ganze rationale Funktionen gegebenen Frades und trigonometrischen Summen gegebener Ordnung, Göttingen, 1911

[40] Jafarov S. Z., “Approximation by trigonometric polynomials in rearrangement invariant quasi Banach function spaces”, Mediterr. J. Math., 12 (2015), 37–50 | DOI | MR | Zbl

[41] Johansson H., “Embedding of $H_{p}^{\omega}$ in some Lorentz spases”, Res. Rept. Univ. Umea., 6 (1975), 1–36

[42] Kokilashvili V., Yildirir Y. E., “On the approximation by trigonometric polynomials in weighted Lorentz spaces”, J. Funct. Spaces Appl., 8 (2010), 67–86 | DOI | MR | Zbl

[43] Potapov M. K., Simonov B. V., Tikhonov S. Yu., “Mixed moduli of smoothness in $L_{p}$, $1

\infty$: A survey”, Surv. Approx. Theory., 8 (2013), 1–57 | MR | Zbl

[44] Quade E. S., “Trigonometric approximation in the mean”, Duke Math. J., 3 (1937), 529–543 | DOI | MR | Zbl

[45] Salem R., “Sur certaines fonctions continues et le propriétés de leur séries de Fourier”, C. R. Acad. Sci., 201 (1935), 703–705 | Zbl

[46] Taberski R., “Differences, moduli and derivatives of fractional orders”, Comment. Math. Prace Mat., 19:2 (1976–1977), 389–400 | MR

[47] Taberski R., “Indirect approximation theorems in $L^{p}$-metrics ($1

\infty$)”, Banach Center Publ., 4 (1979), 247–259 | MR | Zbl