Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_230_a1, author = {G. A. Akishev}, title = {Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the {Lorentz} space}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {8--24}, publisher = {mathdoc}, volume = {230}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/} }
TY - JOUR AU - G. A. Akishev TI - Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 8 EP - 24 VL - 230 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/ LA - ru ID - INTO_2023_230_a1 ER -
%0 Journal Article %A G. A. Akishev %T Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 8-24 %V 230 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/ %G ru %F INTO_2023_230_a1
G. A. Akishev. Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 8-24. http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/
[1] Akishev G., “Otsenki nailuchshikh priblizhenii funktsii klassa logarifmicheskoi gladkosti v prostranstve Lorentsa”, Tr. IMM UrO RAN., 23:3 (2017), 3–21 | MR
[2] Akishev G., “Otsenki nailuchshikh priblizhenii funktsii klassa Nikolskogo"– Besova v prostranstve Lorentsa trigonometricheskimi polinomami”, Tr. IMM UrO RAN., 26:2 (2020), 5–27 | MR
[3] Akishev G., “Neravenstva dlya nailuchshego priblizheniya «uglom» i modulya gladkosti funktsii v prostranstve Lorentsa”, Mat. Mezhdunar. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXIV» (Voronezh, 3–9 maya 2023 g.), VGU, Voronezh, 2023, 37–38
[4] Amanov T. I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976 | MR
[5] Akhiezer N. I., Lektsii po teorii approksimatsii, Gostekhizdat, M., 1947 | MR
[6] Babenko A. G., “O v neravenstve Dzheksona—Stechkina dlya nailuchshikh $L^{2}$-priblizhenii funktsii trigonometricheskimi polinomami”, Tr. In-ta mat. mekh. UrO RAN., 7:1 (2001), 30–46 | MR
[7] Berdyshev V. I., “O teoreme Dzheksona v $L_{p}$”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 88 (1967), 3–16 | MR | Zbl
[8] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR
[9] Bugrov Ya. S., “Priblizhenie trigonometricheskimi polinomami funktsii mnogikh peremennykh”, Trudy nauchnogo ob'edineniya prepodavatelei fiziko-matematicheskikh fakultetov pedagogicheskikh institutov Dalnego Vostoka. T. 1, Khabarovsk, 1962, 1–28
[10] Ivanov V. I., “Pryamye i obratnye teoremy teorii priblizheniya v metrike $Lp$ dlya $0
1$”, Mat. zametki., 56:2 (1975), 15–40[11] Ivanov V. I., “Pryamye i obratnye teoremy teorii priblizheniya periodicheskikh funktsii v rabotakh S. B. Stechkina i ikh razvitie”, Tr. IMM UrO RAN., 16:4 (2010), 5–17
[12] Ivanov V. I., “Konstanty Dzheksona i konstanty Yunga v vektornykh $L_{p}$-prostranstvakh”, Izv. Tulsk. gos. un-ta., 1:1 (1995), 67–85 | MR
[13] Ivanov V. I., Smirnov O. I., Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_{p}$, TulGU, Tula, 1995
[14] Koneichuk N. P., “Tochnaya konstanta v neravenstve D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnykh periodicheskikh funktsii”, Dokl. AN SSSR., 145:3 (1962), 314–315
[15] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[16] Novikov S. Ya., Posledovatelnosti funktsii v simmetrichnykh prostranstvakh, Samar. un-t, Samara, 2008
[17] Potapov M. K., “O priblizhenii «uglom»”, Proc. Conf. Constructive Theory of Functions, Akad. Kiado, Budapesht, 1972, 371–399
[18] Potapov M. K., “Priblizhenie «uglom» i teoremy vlozheniya”, Math. Balkan., 2 (1972), 183–198 | MR | Zbl
[19] Potapov M. K., “Izuchenie nekotorykh klassov funktsii pri pomoschi priblizheniya «uglom»”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 117 (1972), 256–291 | Zbl
[20] Runovskii K. V., “Pryamaya teorema teorii priblizhenii dlya obschego modulya gladkosti”, Mat. zametki., 95:6 (2014), 899–910 | DOI | Zbl
[21] Runovskii K. V., Omelchenko N. V., “Smeshannyi obobschennyi modul gladkosti i priblizhenie «uglom» iz trigonometricheskikh polinomov”, Mat. zametki., 100:3 (2016), 421–432 | DOI | MR | Zbl
[22] Smailov E. S., Esmaganbetov M. G., Shayakhmetova B. K., “O differentsialnykh svoistvakh funktsii v $L_{p_{1}, p_{2}}[0, 2\pi]^{2}$”, Sb. nauch. tr. «Sovremennye voprosy teorii funktsii i funktsionalnogo analiza», Karaganda, 1988, 86–100
[23] Smirnov O. I., “Priblizhenie v prostranstve $L_{p}(\mathbb{T}^{m})$ «uglom»”, Izv. Tulsk. gos. un-ta., 1:1 (1995), 116–123 | MR
[24] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974
[25] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15:3 (1951), 219–242 | Zbl
[26] Stechkin S. B., “O teoreme Kolmogorova—Seliverstova”, Izv. AN SSSR. Ser. mat., 17:6 (1953), 499–512 | MR | Zbl
[27] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0
1$”, Mat. sb., 98:3 (1975), 395–415 | MR | Zbl[28] Storozhenko E. A., Osvald P., “Teoremy Dzheksona v prostranstvakh $L_p(R^{n})$, $0
1$”, Sib. mat. zh., 19:4 (1978), 888–901 | MR | Zbl[29] Timan M. F., “Osobennosti osnovnykh teorem konstruktivnoi teorii funktsii v prostranstvakh $L_{p}$”, AN Azerb. SSR., 1965, 18–25 | Zbl
[30] Timan M. F., “O teoreme Dzheksona v prostranstvakh $L_p$”, Ukr. mat. zh., 1 (1966), 134–137 | Zbl
[31] Timan A. F., Timan M. F., “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR., 71 (1950), 17–19
[32] Timan M. F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_{p}$”, Mat. sb., 46:1 (1958), 125–132 | Zbl
[33] Chernykh N. I., “O neravenstve Dzheksona v $L_{p}(0, 2\pi)$ s tochnoi konstantoi”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 198 (1992), 232–241 | Zbl
[34] Akgun R., “Approximation by polynomials in rearrangement invariant quasi Banach function spaces”, Banach J. Math. Anal., 6:2 (2012), 113–131 | DOI | MR | Zbl
[35] Gogatishvili A., Opic B., Tikhonov S., Trebels W., “Ulyanov-type inequalities between Lorentz–Zygmund spaces”, J. Fourier Anal. Appl., 20 (2014), 1020–1049 | DOI | MR | Zbl
[36] Creekmore J., “Type and cotype in Lorentz $L_{p,q}$ spaces”, Proc. Kön. Ned. Akad. Wetensch., 84:2 (1981), 145–152 | MR
[37] Gurbea G. P., Cuerva J., Perez C.,, “Extrapolation with weights, rearrangement function spaces, modular inequalities and applications to singular integrals”, Adv. Math., 203 (2006), 256–318 | DOI | MR
[38] Yurt H., Guven A., “Multivariate approximation theorems in weighted Lorentz spaces”, Mediterr. J. Math., 12 (2015), 863–876 | DOI | MR | Zbl
[39] Jackson D., Über die Genauigkeit der Annaheruny stetiger Funktionen durch ganze rationale Funktionen gegebenen Frades und trigonometrischen Summen gegebener Ordnung, Göttingen, 1911
[40] Jafarov S. Z., “Approximation by trigonometric polynomials in rearrangement invariant quasi Banach function spaces”, Mediterr. J. Math., 12 (2015), 37–50 | DOI | MR | Zbl
[41] Johansson H., “Embedding of $H_{p}^{\omega}$ in some Lorentz spases”, Res. Rept. Univ. Umea., 6 (1975), 1–36
[42] Kokilashvili V., Yildirir Y. E., “On the approximation by trigonometric polynomials in weighted Lorentz spaces”, J. Funct. Spaces Appl., 8 (2010), 67–86 | DOI | MR | Zbl
[43] Potapov M. K., Simonov B. V., Tikhonov S. Yu., “Mixed moduli of smoothness in $L_{p}$, $1
\infty$: A survey”, Surv. Approx. Theory., 8 (2013), 1–57 | MR | Zbl[44] Quade E. S., “Trigonometric approximation in the mean”, Duke Math. J., 3 (1937), 529–543 | DOI | MR | Zbl
[45] Salem R., “Sur certaines fonctions continues et le propriétés de leur séries de Fourier”, C. R. Acad. Sci., 201 (1935), 703–705 | Zbl
[46] Taberski R., “Differences, moduli and derivatives of fractional orders”, Comment. Math. Prace Mat., 19:2 (1976–1977), 389–400 | MR
[47] Taberski R., “Indirect approximation theorems in $L^{p}$-metrics ($1
\infty$)”, Banach Center Publ., 4 (1979), 247–259 | MR | Zbl