Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_230_a1, author = {G. A. Akishev}, title = {Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the {Lorentz} space}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {8--24}, publisher = {mathdoc}, volume = {230}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/} }
TY - JOUR AU - G. A. Akishev TI - Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 8 EP - 24 VL - 230 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/ LA - ru ID - INTO_2023_230_a1 ER -
%0 Journal Article %A G. A. Akishev %T Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 8-24 %V 230 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/ %G ru %F INTO_2023_230_a1
G. A. Akishev. Inequalities for the best ``angular'' approximation and the smoothness modulus of a function in the Lorentz space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 8-24. http://geodesic.mathdoc.fr/item/INTO_2023_230_a1/