Solutions of some systems of functional equations related to complex, double, and dual numbers
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 3, Tome 229 (2023), pp. 37-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the problem on the embedding of three two-metric, phenomenologically symmetric geometries of two sets of rank $(3,2)$ related to complex, double, and dual numbers, into a two-metric, phenomenologically symmetric geometry of two sets of rank $(4,2)$ determined by a functions of two points $f=(x\xi +y\mu + \rho, x\eta +y\nu + \tau)$. The problem is reduced to the search for nondegeenerate solutions of three special systems of functional equations immediately related to complex, double, and dual numbers.
Keywords: functional equation, complex numbers, double numbers, dual numbers
Mots-clés : Jordan form
@article{INTO_2023_229_a4,
     author = {V. A. Kyrov},
     title = {Solutions of some systems of functional equations related to complex, double, and dual numbers},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {229},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_229_a4/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Solutions of some systems of functional equations related to complex, double, and dual numbers
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 37
EP  - 46
VL  - 229
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_229_a4/
LA  - ru
ID  - INTO_2023_229_a4
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Solutions of some systems of functional equations related to complex, double, and dual numbers
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 37-46
%V 229
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_229_a4/
%G ru
%F INTO_2023_229_a4
V. A. Kyrov. Solutions of some systems of functional equations related to complex, double, and dual numbers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 3, Tome 229 (2023), pp. 37-46. http://geodesic.mathdoc.fr/item/INTO_2023_229_a4/

[1] Bogdanova R. A., Mikhailichenko G. G., “Posledovatelnoe po rangu $(n+1,2)$ vlozhenie dvumetricheskikh fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv”, Izv. vuzov. Mat., 6 (2020), 9–14 | Zbl

[2] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR

[3] Kyrov V. A., “O vlozhenii dvumetricheskikh fenomenologicheski simmetrichnykh geometrii”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 56 (2018), 5–16 | MR | Zbl

[4] Kyrov V. A., “Giperkompleksnye chisla v nekotorykh geometriyakh dvukh mnozhestv, II”, Izv. vuzov. Mat., 7 (2020), 39–54

[5] Kyrov V. A., Mikhailichenko G. G., “Nevyrozhdennye kanonicheskie resheniya odnoi sistemy funktsionalnykh uravnenii”, Izv. vuzov. Mat., 8 (2021), 46–55 | Zbl

[6] Mikhailichenko G. G., “Dvumetricheskie fizicheskie struktury ranga $(n+1,2)$”, Sib. mat. zh., 34:3 (1993), 132–143 | MR | Zbl

[7] Mikhailichenko G. G., Gruppovaya simmetriya fizicheskikh struktur, Barnaul. gos. ped. un-t, Barnaul, 2003

[8] Mikhailichenko G. G., Kyrov V. A., “Giperkompleksnye chisla v nekotorykh geometriyakh dvukh mnozhestv, I”, Izv. vuzov. Mat.., 7 (2017), 19–29 | Zbl

[9] Kyrov V. A., “Commutative hypercomplex numbers and the geometry of two sets”, Zh. SFU. Ser. Mat. fiz., 13:3 (2020), 373–382 | MR | Zbl