Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_229_a2, author = {S. G. Bulanov}, title = {Necessary and sufficient conditions for the stability of systems of ordinary differential equations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {22--32}, publisher = {mathdoc}, volume = {229}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_229_a2/} }
TY - JOUR AU - S. G. Bulanov TI - Necessary and sufficient conditions for the stability of systems of ordinary differential equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 22 EP - 32 VL - 229 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_229_a2/ LA - ru ID - INTO_2023_229_a2 ER -
%0 Journal Article %A S. G. Bulanov %T Necessary and sufficient conditions for the stability of systems of ordinary differential equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 22-32 %V 229 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_229_a2/ %G ru %F INTO_2023_229_a2
S. G. Bulanov. Necessary and sufficient conditions for the stability of systems of ordinary differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 3, Tome 229 (2023), pp. 22-32. http://geodesic.mathdoc.fr/item/INTO_2023_229_a2/
[1] Beloglazov V. V., Biryuk N. D., Glukhov I. L., “Chislennyi analiz ustoichivosti parametricheskogo kontura pervym metodom Lyapunova”, Vestn. VGU. Ser. Fiz. Mat., 2012, no. 1, 13–20
[2] Bulanov S. G., “Analiz ustoichivosti sistem lineinykh differentsialnykh uravnenii na osnove preobrazovaniya raznostnykh skhem”, Mekhatron. Avtomat. Upravl., 20:9 (2019), 542–549
[3] Dzhanunts G. A., Romm Ya. E., “Variruemoe kusochno-interpolyatsionnoe reshenie zadachi Koshi dlya obyknovennykh differentsialnykh uravnenii s iteratsionnym utochneniem”, Zh. vychisl. mat. mat. fiz., 57:10 (2017), 1641–1660 | DOI | MR | Zbl
[4] Kulikov L. I., “Sintez avtomaticheskogo upravleniya posadkoi BLA samoletnogo tipa i analiz ustoichivosti zhelaemykh rezhimov dvizheniya”, Fundam. prikl. mat., 2018, no. 2, 209–220
[5] Orlov A. I., Volkov S. V., “Analiz ustoichivosti sinkhronnykh generatorov, osnaschennykh ustroistvom avtomaticheskogo regulirovaniya vozbuzhdeniya”, Vestn. Irkut. gos. tekhn. un-ta., 21:1 (2017), 120–128
[6] Polyak B. T., Kuznetsov O. N., Chumachenko V. V., “Issledovanie ustoichivosti energosistemy s odnopolyarnym magnitnym tormozom”, Avtomat. telemekh., 2016, no. 9, 58–69 | Zbl
[7] Romm Ya. E., Bulanov S. G., “Chislennoe modelirovanie ustoichivosti po Lyapunovu”, Sovr. naukoem. tekhnol., 2021, no. 7, 42–60 | DOI
[8] Romm Ya. E., “Kompyuterno-orientirovannyi analiz ustoichivosti na osnove rekurrentnykh preobrazovanii raznostnykh reshenii obyknovennykh differentsialnykh uravnenii”, Kibern. sist. anal., 51:3 (2015), 107–124 | MR | Zbl
[9] Romm Ya. E., “Kompyuterno-orientirovannyi analiz ustoichivosti po znakam komponentov resheniya differentsialnoi sistemy i ikh dvukh proizvodnykh”, Sovr. naukoem. tekhnol., 2021, no. 9, 100–124 | DOI
[10] Romm Ya. E., “O neobkhodimykh i dostatochnykh usloviyakh ustoichivosti po Lyapunovu”, Sovr. naukoem. tekhnol., 2022, no. 2, 92–109 | DOI
[11] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999 | MR
[12] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964 | MR
[13] Bulanov S. G., “Computer analysis of differential systems stability based on linearization and matrix multiplicative criteria”, J. Phys. Conf. Ser., 1902 (2021), 012101 | DOI
[14] Hafstein S., “A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations”, Dynam. Syst., 20 (2005), 281–299 | DOI | MR | Zbl
[15] Zhaolu T., Chuanqing G., “A numerical algorithm for Lyapunov equations”, J. Appl. Math. Comput., 202:1 (2008), 44–53 | DOI | MR | Zbl