Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 58-84

Voir la notice de l'article provenant de la source Math-Net.Ru

In the fourth part of the review, we discuss mathematical models of clustering that describe the behavior of impurity particles (markers, tags, etc.) in a turbulent environment. Along with the classical approach (Smoluchowski, Richardson), we describe statistical models used in computer modeling of processes (the Neyman–Scott and Metropolis models and Markov chains). Some aspects of the processes of local accumulation and gravitational sedimentation of particles in a turbulent environment are discussed. The last section is devoted to the concept of a representative sample, which is important in natural and numerical experiments. The first part: Itogi Nauki Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 220. — P. 125–144. The second part: Itogi Nauki Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 221. — P. 128–147. The third part: Itogi Nauki Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 222. — P. 115–133.
Mots-clés : turbulence, Markov chain
Keywords: power spectrum, radial function, numerical modeling
@article{INTO_2023_228_a5,
     author = {V. V. Uchaikin and V. A. Litvinov},
     title = {Spontaneous clustering in {Markov} chains. {IV.} {Clustering} in turbulent environments},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--84},
     publisher = {mathdoc},
     volume = {228},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_228_a5/}
}
TY  - JOUR
AU  - V. V. Uchaikin
AU  - V. A. Litvinov
TI  - Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 58
EP  - 84
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_228_a5/
LA  - ru
ID  - INTO_2023_228_a5
ER  - 
%0 Journal Article
%A V. V. Uchaikin
%A V. A. Litvinov
%T Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 58-84
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_228_a5/
%G ru
%F INTO_2023_228_a5
V. V. Uchaikin; V. A. Litvinov. Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 58-84. http://geodesic.mathdoc.fr/item/INTO_2023_228_a5/