Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 58-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the fourth part of the review, we discuss mathematical models of clustering that describe the behavior of impurity particles (markers, tags, etc.) in a turbulent environment. Along with the classical approach (Smoluchowski, Richardson), we describe statistical models used in computer modeling of processes (the Neyman–Scott and Metropolis models and Markov chains). Some aspects of the processes of local accumulation and gravitational sedimentation of particles in a turbulent environment are discussed. The last section is devoted to the concept of a representative sample, which is important in natural and numerical experiments. The first part: Itogi Nauki Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 220. — P. 125–144. The second part: Itogi Nauki Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 221. — P. 128–147. The third part: Itogi Nauki Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 222. — P. 115–133.
Mots-clés : turbulence, Markov chain
Keywords: power spectrum, radial function, numerical modeling
@article{INTO_2023_228_a5,
     author = {V. V. Uchaikin and V. A. Litvinov},
     title = {Spontaneous clustering in {Markov} chains. {IV.} {Clustering} in turbulent environments},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--84},
     publisher = {mathdoc},
     volume = {228},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_228_a5/}
}
TY  - JOUR
AU  - V. V. Uchaikin
AU  - V. A. Litvinov
TI  - Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 58
EP  - 84
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_228_a5/
LA  - ru
ID  - INTO_2023_228_a5
ER  - 
%0 Journal Article
%A V. V. Uchaikin
%A V. A. Litvinov
%T Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 58-84
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_228_a5/
%G ru
%F INTO_2023_228_a5
V. V. Uchaikin; V. A. Litvinov. Spontaneous clustering in Markov chains. IV. Clustering in turbulent environments. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 58-84. http://geodesic.mathdoc.fr/item/INTO_2023_228_a5/

[1] Beschastnykh S. K., Fomina I. N., “Dinamicheskaya model v zadache klasternogo analiza”, Avtomat. telemekh., 7 (1987), 179–182

[2] Uchaikin V. V., “Nelokalnye modeli turbulentnoi diffuzii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 154 (2018), 113–122 | MR

[3] Uchaikin V. V., “Spontannaya klasterizatsiya v markovskikh tsepyakh. II. Mezofraktalnaya model”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 221 (2023), 128–147 | DOI

[4] Uchaikin V. V., Erlykin A. D., Sibatov R. T., “Nelokalnaya (drobno-differentsialnaya) model perenosa kosmicheskikh luchei v mezhzvezdnoi srede”, Usp. fiz. nauk., 193:3 (2023), 233–278 | DOI

[5] Uchaikin V. V., Kozhemyakina E. V., “Spontannaya klasterizatsiya v markovskikh tsepyakh. III. Algoritmy Monte-Karlo”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 222 (2023), 115–133 | DOI

[6] Aliseda A., Cartellier A., Hainaux F. et al., “Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence”, J. Fluid. Mech., 468 (2002), 77–105 | DOI | Zbl

[7] Balkovsky E., Falkovich G., Fouxon A., “Intermittent distribution of inertial particles in turbulent flows”, Phys. Rev. Lett., 86 (2001), 2790 | DOI

[8] Bhatnagar A., Gustavsson K., Mitra D., “Statistics of the relative velocity of particles in turbulent flows: monodisperse particles”, Phys. Rev. E., 97:2 (2018), 023105 | DOI

[9] Brandt L., Coletti F., “Particle-Laden Turbulence: Progress and Perspectives”, Rev. Fluid Mech., 54 (2022), 159–189 | DOI | Zbl

[10] Bragg A. D., Collins L. R., “New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles”, New J. Phys., 16:5 (2014), 055013 | DOI

[11] Chun J., Koch D. L., Rani S. L., Ahluwalia A., Collins L. R., “Clustering of aerosol particles in isotropic turbulence”, J. Fluid Mech., 536 (2005), 219-–251 | DOI | MR | Zbl

[12] van Dongen P. G. J., “Spatial fluctuations in reaction-limited aggregation”, J. Stat. Phys., 54:1/2 (1989), 223–271 | MR

[13] Dorso C., Randrup J., “Early recognition of clusters in molecular dynamics”, Phys. Lett. B., 301:4 (1993), 328–333 | DOI

[14] Flory P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953

[15] Grabowski W. W., Wang L. P., “Growth of cloud droplets in a turbulent environment”, Ann. Rev. Fluid Mech., 45 (2013), 293–324 | DOI | MR | Zbl

[16] Gubernatis J. E., “Marshall Rosenbluth and the Metropolis algorithm”, Phys. Plasmas., 12:5 (2005), 057303 | DOI | MR

[17] Haugen N. E. L., Brandenburg A. , Sandin C. et al., “Spectral characterisation of inertial particle clustering in turbulence”, J. Fluid Mech., 934 (2022), A37 | DOI | MR

[18] Ijzermans R. H. A., Meneguz E., Reeks M. W., “Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion”, J. Fluid Mech., 653 (2010), 99–-136 | DOI | Zbl

[19] Ijzermans R. H. A., Reeks M. W., Meneguz E., Picciotto M., Soldati A., “Measuring segregation of inertial particles in turbulence by a full Lagrangian approach”, Phys. Rev. E., 80 (2009), 015302 | DOI

[20] Ireland P. J., Collins L. R., “Direct numerical simulation of inertial particle entrainment in a shearless mixing layer”, J. Fluid Mech., 74 (2012), 301–320 | DOI | MR

[21] Karchniwy E., Klimanek A., Haugen N. E. L., “The effect of turbulence on mass transfer rates between inertial polydisperse particles and fluid”, J. Fluid Mech., 874 (2019), 1147–1168 | DOI | MR | Zbl

[22] Kukushkin A. V., Kulichenko A. A., “Levy walks as a universal mechanism of turbulence”, Nonlocal. Found., 3 (2023), 602–620 | DOI

[23] Lee T., “Lognormality in turbulence energy spectra”, Entropy., 22:6 (2020), 669 | DOI

[24] Lu J., Nordsiek H., Shaw R. A., “Clustering of settling charged particles in turbulence: theory and experiments”, New J. Phys., 12 (2010), 123030 | DOI

[25] Monchaux R., Bourgoin M., Cartellier A., “Preferential concentration of heavy particles: A Voronoi analysis”, Phys. Fluids., 22:10 (2010), 103304 | DOI

[26] Monchaux R., Bourgoin M., Cartellier A., “Analyzing preferential concentration and clustering of inertial particles in turbulence”, Int. J. Multiphase Flow., 40 (2012), 1–18 | DOI

[27] Pan L., Padoan P., Scalo J., et al., “Turbulent clustering of protoplanetary dust and planetesimal formation”, Astrophys. J., 740:1 (2011), 6 | DOI | Zbl

[28] Reade W. C., Collins L. R., “Effect of preferential concentration on turbulent collision rates”, Phys. Fluids., 12 (2000), 2530 | DOI | Zbl

[29] Robert M., McGrady E. D., “On the validity of Smoluchowski's equation for cluster-cluster aggregation kinetics”, J. Chern. Phys., 82:11 (1985), 5269–5274 | DOI

[30] Saw E.-W., Shaw R. A., Salazar J. P. et al., “Spatial clustering of polydisperse inertial particles in turbulence: I. Comparing simulation with theory”, New J. Phys., 14:10 (2012), 105030 | DOI

[31] Saw E. W. et al., “Spatial clustering of polydisperse inertial particles in turbulence: II. Comparing simulation with experiment”, New J. Phys., 14:10 (2012), 105031 | DOI

[32] Shaw R. A., “Particle-turbulence interactions in atmospheric clouds”, Ann. Rev. Fluid Mech., 35:183 (2003), 183–227 | DOI | Zbl

[33] Shaw R. A., Kostinski A. B., Larsen M. L., “Towards quantifying droplet clustering in clouds”, Q. J. R. Meteorol. Soc., 128 (2002), 1043 | DOI

[34] Squire J., Hopkins P. F., “The distribution of density in supersonic turbulence”, Mon. Not. R. Astron. Soc., 471:3 (2017), 3753–3767 | DOI

[35] Uchaikin V. V., “Mathematical modelling of the distribution of galaxies in the Universe”, J. Math. Sci., 84 (1997), 1175–1178 | DOI | MR | Zbl

[36] Uchaikin V. V., “If the Universe were a Levy–Mandelbrot fractal...”, Grav. Cosmology., 10:1-2 (2004), 5–24 | MR | Zbl

[37] Uchaikin V. V., “The mesofractal universe driven by Rayleigh–Levy walks”, Gen. Rel. Grav., 36:7 (2004), 1689–1717 | DOI | Zbl

[38] Uchaikin V., Gismyatov I., Gusarov G., Svetukhin V., “Paired Levy–Mandelbrot trajectory as a homogeneous fractal”, Int. J. Bifurcation Chaos., 8 (1998), 977–984 | DOI | Zbl

[39] Uchaikin V. V., Gusarov G. G., “Levy flight applied to randommedia problems”, J. Math. Phys., 38 (1997), 2453–2464 | DOI | MR | Zbl

[40] Uchaikin V. V., Zolotarev V. M., Chance and Stability. Stable Distributions and Their Applications, VSP, Utrecht, The Netherlands, 1999 | MR | Zbl

[41] Wang L. P., Maxey M. R., “Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence”, J. Fluid Mech., 256 (1993), 27–68 | DOI

[42] Yavuz M. A., Kunnen R. P. J., Vanheijst G. J. F., et al., “Extreme small-scale clustering of droplets in turbulence driven by hydrodynamic interactions”, Phys. Rev. Lett., 120:24 (2018), 244504 | DOI

[43] Zaichik L. I., Alipchenkov V. M., “Pair dispersion and preferential concentration of particles in isotropic turbulence”, Phys. Fluids., 15 (2003), 1776 | DOI | MR | Zbl