The influence of competition on the dynamics of macroeconomic systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 20-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of interaction (competition) of two identical macroeconomic systems is studied in the case where the dynamics of each of them is modeled by the well-known Keynes system of differential equations. It is shown that this problem can be interpreted as the problem of synchronization of two self-oscillating systems. The analysis is based on the method of integral manifolds and Poincaré method of normal forms. We prove that three types of oscillations arise in the problem: completely synchronous self-oscillations, antiphase oscillations, and asymmetric oscillations. For all solutions, their stability is examined and asymptotic formulas are obtained.
Keywords: Keynes model, economic cycle, competition, integral manifold, asymptotics, normal form, stability
Mots-clés : bifurcation
@article{INTO_2023_228_a2,
     author = {A. N. Kulikov and D. A. Kulikov and D. G. Frolov},
     title = {The influence of competition on the dynamics of macroeconomic systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {228},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_228_a2/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
AU  - D. G. Frolov
TI  - The influence of competition on the dynamics of macroeconomic systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 20
EP  - 31
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_228_a2/
LA  - ru
ID  - INTO_2023_228_a2
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%A D. G. Frolov
%T The influence of competition on the dynamics of macroeconomic systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 20-31
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_228_a2/
%G ru
%F INTO_2023_228_a2
A. N. Kulikov; D. A. Kulikov; D. G. Frolov. The influence of competition on the dynamics of macroeconomic systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 20-31. http://geodesic.mathdoc.fr/item/INTO_2023_228_a2/

[9] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravneni, Nauka, M., 1978

[10] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[11] Kulikov D. A., “Avtomodelnye periodicheskie resheniya i bifurkatsii ot nikh v zadache o vzaimodeistvii dvukh slabosvyazannykh ostsillyatorov”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika., 14:5 (2006), 120–132 | Zbl

[12] Kuznetsov A. P., Paksyutov V. I., “O dinamike dvukh ostsillyatorov Van der Polya—Duffinga s dissipativnoi svyazyu”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika., 11:6 (2003), 48–64 | Zbl

[13] Kuznetsov A. P., Paksyutov V. I., Roman Yu. P., “Osobennosti sinkhronizatsii v sisteme neidentichnykh svyazannykh ostsillyatorov Van der Polya i Van der Polya—Duffinga. Shirokopolosnaya sinkhronizatsiya”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika., 15:4 (2007), 3–15

[14] Pikovskii A., Rozenblyum M., Kurtts Yu., Sinkhronizatsiya. Fundamentalnoe yavlenie, Tekhnosfera, M., 2003

[15] Guckenheimer J., Holmes P. J., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, Berlin, 1983 | MR | Zbl

[16] Keynes J. M., General theory of employment, interest, and money, Harcourt Brace, New-York, 1936 | MR

[17] Kulikov D. A., “Self-similar cycles and their local bifurcations in the problem of two weakly coupled oscillators”, J. Appl. Math. Mech., 74:4 (2010), 389–400 | DOI | MR | Zbl

[18] Kulikov D. A., “Dynamics of coupled Van der Pol Oscillators”, Journal of Mathematical Sciences., 262:6 (2022), 817–824 | DOI | Zbl

[19] Radin M. A., Kulikov A. N., Kulikov D. A., “Synchronization of fluctuations in the interaction of economies within the framework of the Keynes’s business cycle model”, Nonlinear Dynamics, Psychology, and Life Sciences., 25:1 (2021), 93–111

[20] Radin M. A., Kulikov A. N., Kulikov D. A., “The influence of spatial effects on the dynamics of solutions in Keynes' mathematical model of the business cycle”, Nonlinear Dynamics, Psychology, and Life Sciences., 26:4 (2022), 441–463 | MR

[21] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR | Zbl