Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_227_a4, author = {T. L. Sabatulina}, title = {On several models of population dynamics with distributed delay}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {61--78}, publisher = {mathdoc}, volume = {227}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a4/} }
TY - JOUR AU - T. L. Sabatulina TI - On several models of population dynamics with distributed delay JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 61 EP - 78 VL - 227 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_227_a4/ LA - ru ID - INTO_2023_227_a4 ER -
%0 Journal Article %A T. L. Sabatulina %T On several models of population dynamics with distributed delay %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 61-78 %V 227 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_227_a4/ %G ru %F INTO_2023_227_a4
T. L. Sabatulina. On several models of population dynamics with distributed delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 61-78. http://geodesic.mathdoc.fr/item/INTO_2023_227_a4/
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR
[2] Azbelev N. V., Malygina V. V., “Ob ustoichivosti trivialnogo resheniya nelineinykh uravnenii s posledeistviem”, Izv. vuzov. Mat., 1994, no. 6, 20–27 | Zbl
[3] Andronov A. A., Maier A. T., “Prosteishie lineinye sistemy s zapazdyvaniem”, Avtomat. telemekh., 7:2-3 (1946), 95–106 | Zbl
[4] Vagina M. Yu., “Logisticheskaya model s zapazdyvayuschim usredneniem”, Avtomat. telemekh., 2003, no. 4, 167–173 | MR | Zbl
[5] Kipnis M. M., Vagina M. Yu., “Ustoichivost nulevogo resheniya differentsialnogo uravneniya s zapazdyvaniyami”, Mat. zametki., 74:5 (2003), 786–789 | DOI | MR | Zbl
[6] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR
[7] Malygina V. V., Sabatulina T. L., “Znakoopredelennost reshenii i ustoichivost lineinykh differentsialnykh uravnenii s peremennym raspredelennym zapazdyvaniem”, Izv. vuzov. Mat., 2008, no. 8, 73–77 | Zbl
[8] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR
[9] Sabatulina T. L., “Priznaki polozhitelnosti funktsii Koshi differentsialnogo uravneniya s raspredelennym zapazdyvaniem”, Izv. vuzov. Mat., 2010, no. 11, 50–62 | MR | Zbl
[10] Sabatulina T. L., Malygina V. V., “Nekotorye priznaki ustoichivosti lineinogo avtonomnogo differentsialnogo uravneniya s raspredelennym zapazdyvaniem”, Izv. vuzov. Mat., 2007, no. 6, 55–63 | MR
[11] Sabatulina T. L., Malygina V. V., “Ob ustoichivosti lineinogo differentsialnogo uravneniya s ogranichennym posledeistviem”, Izv. vuzov. Mat., 2014, no. 4, 25–41 | MR | Zbl
[12] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985
[13] Berezansky L., Braverman E., “Linearized oscillation theory for nonlinear equation with a distributed delay”, Appl. Math. Comp. Model., 48 (2008), 287–304 | DOI | MR | Zbl
[14] Berezansky L., Braverman E., Idels L., “Nicholson's blowflies differential equations revisited: Main results and open problems”, Appl. Math. Model., 34:6 (2010), 1405–1417 | DOI | MR | Zbl
[15] Gurney W. S. C., Blythe S. P., Nisbet R. M., “Nicholson's blowflies revisited”, Nature., 1980, no. 287, 17–21 | DOI
[16] Hayes N. D., “Roots of the transcendental equation associated with acertial differential-difference equation”, J. London Math. Soc., 25 (1950), 221–246 | MR
[17] Hutchinson G. E., “Circular causal in ecology”, Ann. N.Y. Acad. Sci., 50 (1948), 221–246 | DOI
[18] Mackey M., Glass L., “Oscillations and chaos in physiological control systems”, Science., 197 (1977), 287–289 | DOI | Zbl
[19] May R. M., “Models for single populations”, Theoretical Ecology: Principles and Applications, eds. May R. M., Blackwell Scientific, Oxford, 1976, 4–25
[20] Nicholson A., “An outline of the dynamics of animal populations”, Austral. J. Zool., 1954, no. 2, 9–65 | DOI
[21] Nicholson A. J., “Compensatory reactions of populations to stresses, and their evolutionary significance”, Austral. J. Zool., 1954, no. 2, 1–8 | DOI
[22] Nisbet R., Gurney W., Modelling Fluctuating Populations, Wiley, New York, 1982 | Zbl
[23] Wrigth E. M., “A nonlinear difference-differential equation”, J. Reine Angew. Math., 194 (1955), 66–87 | MR
[24] Volterra V., “Sur la theorie Mathematique des phenomenes hereditaires”, J. Math. Pures Appl., 1928, no. 7, 249–298
[25] Ważevska-Czyżevska M., Lasota A., “Mathematical problems of dynamics of red blood cells production”, Mat. Stos., 3:6 (1976), 23–40 | MR