On several models of population dynamics with distributed delay
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 61-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine several models of population dynamics: the Hutchinson equation, the Mackey–Glass equation, the Lasota–Warzewski equation, and the Nicholson equation. The greatest attention is paid to models in which the aftereffect is considered distributed over a certain interval. The local stability of solutions to these equations is studied.
Keywords: population dynamics, functional differential equation, distributed lag, stability
@article{INTO_2023_227_a4,
     author = {T. L. Sabatulina},
     title = {On several models of population dynamics with distributed delay},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {61--78},
     publisher = {mathdoc},
     volume = {227},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a4/}
}
TY  - JOUR
AU  - T. L. Sabatulina
TI  - On several models of population dynamics with distributed delay
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 61
EP  - 78
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_227_a4/
LA  - ru
ID  - INTO_2023_227_a4
ER  - 
%0 Journal Article
%A T. L. Sabatulina
%T On several models of population dynamics with distributed delay
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 61-78
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_227_a4/
%G ru
%F INTO_2023_227_a4
T. L. Sabatulina. On several models of population dynamics with distributed delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 61-78. http://geodesic.mathdoc.fr/item/INTO_2023_227_a4/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[2] Azbelev N. V., Malygina V. V., “Ob ustoichivosti trivialnogo resheniya nelineinykh uravnenii s posledeistviem”, Izv. vuzov. Mat., 1994, no. 6, 20–27 | Zbl

[3] Andronov A. A., Maier A. T., “Prosteishie lineinye sistemy s zapazdyvaniem”, Avtomat. telemekh., 7:2-3 (1946), 95–106 | Zbl

[4] Vagina M. Yu., “Logisticheskaya model s zapazdyvayuschim usredneniem”, Avtomat. telemekh., 2003, no. 4, 167–173 | MR | Zbl

[5] Kipnis M. M., Vagina M. Yu., “Ustoichivost nulevogo resheniya differentsialnogo uravneniya s zapazdyvaniyami”, Mat. zametki., 74:5 (2003), 786–789 | DOI | MR | Zbl

[6] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR

[7] Malygina V. V., Sabatulina T. L., “Znakoopredelennost reshenii i ustoichivost lineinykh differentsialnykh uravnenii s peremennym raspredelennym zapazdyvaniem”, Izv. vuzov. Mat., 2008, no. 8, 73–77 | Zbl

[8] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR

[9] Sabatulina T. L., “Priznaki polozhitelnosti funktsii Koshi differentsialnogo uravneniya s raspredelennym zapazdyvaniem”, Izv. vuzov. Mat., 2010, no. 11, 50–62 | MR | Zbl

[10] Sabatulina T. L., Malygina V. V., “Nekotorye priznaki ustoichivosti lineinogo avtonomnogo differentsialnogo uravneniya s raspredelennym zapazdyvaniem”, Izv. vuzov. Mat., 2007, no. 6, 55–63 | MR

[11] Sabatulina T. L., Malygina V. V., “Ob ustoichivosti lineinogo differentsialnogo uravneniya s ogranichennym posledeistviem”, Izv. vuzov. Mat., 2014, no. 4, 25–41 | MR | Zbl

[12] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985

[13] Berezansky L., Braverman E., “Linearized oscillation theory for nonlinear equation with a distributed delay”, Appl. Math. Comp. Model., 48 (2008), 287–304 | DOI | MR | Zbl

[14] Berezansky L., Braverman E., Idels L., “Nicholson's blowflies differential equations revisited: Main results and open problems”, Appl. Math. Model., 34:6 (2010), 1405–1417 | DOI | MR | Zbl

[15] Gurney W. S. C., Blythe S. P., Nisbet R. M., “Nicholson's blowflies revisited”, Nature., 1980, no. 287, 17–21 | DOI

[16] Hayes N. D., “Roots of the transcendental equation associated with acertial differential-difference equation”, J. London Math. Soc., 25 (1950), 221–246 | MR

[17] Hutchinson G. E., “Circular causal in ecology”, Ann. N.Y. Acad. Sci., 50 (1948), 221–246 | DOI

[18] Mackey M., Glass L., “Oscillations and chaos in physiological control systems”, Science., 197 (1977), 287–289 | DOI | Zbl

[19] May R. M., “Models for single populations”, Theoretical Ecology: Principles and Applications, eds. May R. M., Blackwell Scientific, Oxford, 1976, 4–25

[20] Nicholson A., “An outline of the dynamics of animal populations”, Austral. J. Zool., 1954, no. 2, 9–65 | DOI

[21] Nicholson A. J., “Compensatory reactions of populations to stresses, and their evolutionary significance”, Austral. J. Zool., 1954, no. 2, 1–8 | DOI

[22] Nisbet R., Gurney W., Modelling Fluctuating Populations, Wiley, New York, 1982 | Zbl

[23] Wrigth E. M., “A nonlinear difference-differential equation”, J. Reine Angew. Math., 194 (1955), 66–87 | MR

[24] Volterra V., “Sur la theorie Mathematique des phenomenes hereditaires”, J. Math. Pures Appl., 1928, no. 7, 249–298

[25] Ważevska-Czyżevska M., Lasota A., “Mathematical problems of dynamics of red blood cells production”, Mat. Stos., 3:6 (1976), 23–40 | MR