On the solution of the initial-boundary problem in a half-strip for a hyperbolic equation with a mixed derivative
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 89-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial-boundary problem for an inhomogeneous second-order hyperbolic equation in a half-strip of a plane with constant coefficients and a mixed derivative is studied. This problem describes transverse oscillations of a finite string with fixed ends. We introduce the notion of a classical solution of the initial-boundary problem, prove a uniqueness theorem for the classical solution, and obtain a formula for the solution in the form of a series whose terms are contour integrals containing the initial data of the problem. A definition of a generalized solution is given and finite formulas for this generalized solution are found.
Mots-clés : oscillation equation
Keywords: hyperbolic equation, mixed derivative, initial boundary value problem, classical solution, generalized solution.
@article{INTO_2023_226_a9,
     author = {V. S. Rykhlov},
     title = {On the solution of the initial-boundary problem in a half-strip for a hyperbolic equation with a mixed derivative},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--107},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a9/}
}
TY  - JOUR
AU  - V. S. Rykhlov
TI  - On the solution of the initial-boundary problem in a half-strip for a hyperbolic equation with a mixed derivative
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 89
EP  - 107
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a9/
LA  - ru
ID  - INTO_2023_226_a9
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%T On the solution of the initial-boundary problem in a half-strip for a hyperbolic equation with a mixed derivative
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 89-107
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a9/
%G ru
%F INTO_2023_226_a9
V. S. Rykhlov. On the solution of the initial-boundary problem in a half-strip for a hyperbolic equation with a mixed derivative. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 89-107. http://geodesic.mathdoc.fr/item/INTO_2023_226_a9/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[2] Kornev V. V., “O primenenii raskhodyaschikhsya ryadov v smeshannykh zadachakh, ne imeyuschikh klassicheskogo resheniya”, Mat. Mezhdunar. konf. Voronezh. vesennyaya mat. shkola «Pontryaginskie chteniya–XXXIII. Sovremennye metody teorii kraevykh zadach» (Voronezh, 3-9 maya 2022 g.), Voronezh, 2022, 132–137

[3] Kornev V. V., Khromov A. P., “Klassicheskoe reshenie smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 172 (2019), 119–-133 | DOI

[4] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.-L., 1950

[5] Kurdyumov V. P., Khromov A. P., Khalova V. A., “Smeshannaya zadacha dlya odnorodnogo volnovogo uravneniya s nenulevoi nachalnoi skorostyu s summiruemym potentsialom”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 20:4 (2020), 444–456 | MR | Zbl

[6] Lomov I. S., “Effektivnoe primenenie metoda Fure dlya postroeniya resheniya smeshannoi zadachi dlya telegrafnogo uravneniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. mat. kibern., 2021, no. 4, 37–42

[7] Lomov I. S., “Obobschennaya formula Dalambera dlya telegrafnogo uravneniya”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 199 (2021), 66–79 | DOI

[8] Lomov I. S., “Effektivnoe primenenie metoda Fure k resheniyu smeshannoi zadachi dlya telegrafnogo uravneniya”, Mat. 21 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Izd-vo Saratov. un-ta, Saratov, 2022, 178–180

[9] Lomov I. S., “Novyi metod postroeniya obobschennogo resheniya smeshannoi zadachi dlya telegrafnogo uravneniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. mat. kibern., 2022, no. 3, 33–40

[10] Lomovtsev F. E., “Metod korrektirovki probnykh reshenii volnovogo uravneniya v krivolineinoi pervoi chetverti ploskosti dlya minimalnoi gladkosti pravoi chasti”, Zh. Belorus. gos. un-ta. Mat. Inf., 3 (2017), 38–-52 | MR

[11] Lomovtsev F. E., “Globalnaya teorema korrektnosti po Adamaru pervoi smeshannoi zadachi dlya volnovogo uravneniya v polupolose ploskosti”, Vesn. GrDU im. Yanki Kupaly. Ser. 2. Mat. Fiz. Іnfarm. Vylich. tekhn. kiravanne., 11:1, 2021 | MR

[12] Lomovtsev F. E., “Pervaya smeshannaya zadacha dlya obschego telegrafnogo uravneniya s peremennymi koeffitsientami na polupryamoi”, Zh. Belorus. gos. un-ta. Mat. Inf., 1 (2021), 18–-38

[13] Lomovtsev F. E., “Globalnaya teorema korrektnosti pervoi smeshannoi zadachi dlya obschego telegrafnogo uravneniya s peremennymi koeffitsientami na otrezke”, Probl. fiz. mat. tekhn., 1 (50) (2022), 62–73

[14] Lomovtsev F. E., Lysenko V. N., “Smeshannaya zadacha dlya obschego odnomernogo volnovogo uravneniya v polupolose ploskosti pri nestatsionarnykh nekharakteristicheskikh vtorykh proizvodnykh”, Vesn. MDU im. A. A. Kulyashova. Ser. B. Pryrodaznaŭchyya navuki: mat. fiz. biyalogiya., 2021, no. 2 (58), 28–55

[15] Moiseev E. I., Lomovtsev F. E., Novikov E. N., “Neodnorodnoe faktorizovannoe giperbolicheskoe uravnenie vtorogo poryadka v chetverti ploskosti pri polunestatsionarnoi faktorizovannoi vtoroi kosoi proizvodnoi v granichnom uslovii”, Dokl. RAN., 459:5 (2014), 544 | DOI | Zbl

[16] Muravei L. A., Petrov V. M., Romanenkov A. M., “O zadache gasheniya poperechnykh kolebanii prodolno dvizhuscheisya struny”, Vestn. Mordov. un-ta., 28:4 (2018), 472–485

[17] Muravei L. A. Romanenkov A. M., “Chislennye metody gasheniya kolebanii dvizhuschegosya bumazhnogo polotna”, Sb. mat. Mezhdunar. konf. «Differentsialnye uravneniya, matematicheskoe modelirovanie i vychislitelnye algoritmy» (Belgorod, 25-–29 oktyabrya 2021 g.), Belgorod, 2021, 194–196

[18] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[19] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[20] Rykhlov V. S., “Metod raskhodyaschikhsya ryadov resheniya smeshannoi zadachi dlya giperbolicheskogo uravneniya”, Sb. mat. Mezhdunar. konf. «XXXII Krymskaya Osennyaya Matematicheskaya Shkola-simpozium po spektralnym i evolyutsionnym zadacham», Poliprint, Simferopol, 2021, 22

[21] Rykhlov V. S., “Reshenie nachalno-granichnoi zadachi dlya uravneniya giperbolicheskogo tipa so smeshannoi proizvodnoi”, Mat. 21 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Izd-vo Saratov. un-ta, Saratov, 2022, 252–255

[22] Rykhlov V. S., “O reshenii nachalno-granichnoi zadachi dlya giperbolicheskogo uravneniya so smeshannoi proizvodnoi”, Mat. Mezhdunar. konf. Voronezh. vesennyaya mat. shkola «Pontryaginskie chteniya–XXXIII. Sovremennye metody teorii kraevykh zadach» (Voronezh, 3-9 maya 2022 g.), Voronezh, 2022, 209–212

[23] Tolstov G. P., “O vtoroi smeshannoi proizvodnoi”, Mat. sb., 24 (66):1 (1949), 27–51

[24] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951

[25] Khromov A. P., “Povedenie formalnogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 56:2 (2016), 239–251 | DOI | MR | Zbl

[26] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 19:3, 2019 | MR | Zbl

[27] Khromov A. P., “Raskhodyaschiesya ryady i funktsionalnye uravneniya, svyazannye s analogami geometricheskoi progressii”, Mat. Mezhdunar. konf. Voronezh. vesennyaya mat. shkola «Pontryaginskie chteniya–XXX. Sovremennye metody teorii kraevykh zadach» (Voronezh, 3-9 maya 2019 g.), Voronezh, 2019, 291–300

[28] Khromov A. P., “Raskhodyaschiesya ryady i metod Fure dlya volnovogo uravneniya”, Mat. 20 Mezhdunar. Saratov. zimnei shk. «Sovremennye problemy teorii funktsii i ikh prilozheniya», Nauchnaya kniga, Saratov, 2020, 433–439.

[29] Khromov A. P. Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha, Matematika. Mekhanika. No 23, Izd-vo Saratov. un-ta, Saratov, 2021, 63–67

[30] Khromov A. P., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravneniya”, Mat. 21 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Izd-vo Saratov. un-ta, Saratov, 2022, 319–324

[31] Khromov A. P., Kornev V. V., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 286–300 | DOI | Zbl

[32] Khromov A. P., Kornev V. V., “Raskhodyaschiesya ryady v metode Fure dlya volnovogo uravneniya”, Tr. in-ta mat. mekh. UrO RAN., 27:4, 2021 | MR

[33] Khromov A. P., Kornev V. V., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha, ne dopuskayuschaya razdeleniya peremennykh”, Tr. Mat. tsentra im. N. I. Lobachevskogo. T. 60, Kazan, 2021, 325–328

[34] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. semin. im. I. G. Petrovskogo, 1983, no. 9, 190–229 | MR | Zbl

[35] Eiler L., Differentsialnoe ischislenie, GITTL, M.-L., 1949

[36] Archibald F. R., Emslie A. G., “The vibration of a string having a uniform motion along its length”, J. Appl. Mech., 25:1 (1958), 347–348 | DOI | Zbl

[37] Mahalingam S., “Transverse vibrations of power transmission chains”, British J. Appl. Phys., 8:4 (1957), 145–148 | DOI

[38] Sack R. A., “Transverse oscillations in traveling strings”, British J. Appl. Phys., 5:6 (1954), 224–226 | DOI