Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto--Sivashinsky equation with allowance for dispersion
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 69-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic boundary-value problem for the dispersive Kuramoto–Sivashinsky equation is considered. The stability of homogeneous equilibria is examined and an analysis of local bifurcations with a change in stability is performed. This analysis is based on the methods of the theory of dynamical systems with an infinite-dimensional space of initial conditions. Sufficient conditions for the presence or absence of invariant manifolds are found. Asymptotic formulas for some solutions are obtained.
Keywords: Kuramoto–Sivashinsky equation, boundary-value problem, stability, asymptotic formula.
Mots-clés : dispersion, bifurcation
@article{INTO_2023_226_a7,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Invariant manifolds and attractors of a periodic boundary-value problem for the {Kuramoto--Sivashinsky} equation with allowance for dispersion},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--79},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a7/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto--Sivashinsky equation with allowance for dispersion
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 69
EP  - 79
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a7/
LA  - ru
ID  - INTO_2023_226_a7
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto--Sivashinsky equation with allowance for dispersion
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 69-79
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a7/
%G ru
%F INTO_2023_226_a7
A. N. Kulikov; D. A. Kulikov. Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto--Sivashinsky equation with allowance for dispersion. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 69-79. http://geodesic.mathdoc.fr/item/INTO_2023_226_a7/

[14] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[15] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[16] Kolesov A. Yu., Kulikov A. N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii, Yaroslav. gos. un-t im. P. G. Demidova, Yaroslavl, 2003

[17] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR | Zbl

[18] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–-753 | MR | Zbl

[19] Kudryashov N. A., Ryabov P. N., Petrov B. A., “Osobennosti formirovaniya dissipativnykh struktur, opisyvaemykh uravneniem Kuramoto—Sivashinskogo”, Model. anal. inform. sist., 22:1 (2015), 105–113 | MR

[20] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1976, 114–129

[21] Kulikov A. N., “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy operatorov v gilbertovom prostranstve”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 186 (2020), 57–66 | DOI

[22] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl

[23] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii v uravneniyakh Kana—Khillarda, Kuramoto—Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. mat. mat. fiz., 59:4 (2019), 670–683 | DOI | MR | Zbl

[24] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950 | MR

[25] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–370

[26] Guckenheimer J., Holmes P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983 | MR | Zbl

[27] Kelley A., “The stable, center-stable, center, center-unstable, unstable manifolds”, J. Differ. Equations., 3:4 (1967), 546–570 | DOI | MR | Zbl

[28] Kulikov A. N., Kulikov D. A., “Bifurcations in Kuramoto—Sivashinsky equation”, Pliska Stud. Math., 25 (2015), 101–110 | MR

[29] Kulikov A. N., Kulikov D. A., “Bifuration in a boundary-value problem of nanoelectronics”, J. Math. Sci., 208:2 (2015), 211–221 | DOI | MR | Zbl

[30] Kulikov A. N., Kulikov D. A., “The Kuramoto–Sivashinsky equation. A local attractor filled with unstable periodic solutions”, Automat. Control Comput. Sci., 52:7 (2018), 708–713 | DOI | MR

[31] Marsden J. E., McCraken M., The Hopf Bifurcations and Its Applications, Springer, New York, 1976 | MR

[32] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997 | MR | Zbl