Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a7, author = {A. N. Kulikov and D. A. Kulikov}, title = {Invariant manifolds and attractors of a periodic boundary-value problem for the {Kuramoto--Sivashinsky} equation with allowance for dispersion}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {69--79}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a7/} }
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto--Sivashinsky equation with allowance for dispersion JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 69 EP - 79 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a7/ LA - ru ID - INTO_2023_226_a7 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %T Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto--Sivashinsky equation with allowance for dispersion %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 69-79 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a7/ %G ru %F INTO_2023_226_a7
A. N. Kulikov; D. A. Kulikov. Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto--Sivashinsky equation with allowance for dispersion. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 69-79. http://geodesic.mathdoc.fr/item/INTO_2023_226_a7/
[14] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978
[15] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[16] Kolesov A. Yu., Kulikov A. N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii, Yaroslav. gos. un-t im. P. G. Demidova, Yaroslavl, 2003
[17] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR | Zbl
[18] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–-753 | MR | Zbl
[19] Kudryashov N. A., Ryabov P. N., Petrov B. A., “Osobennosti formirovaniya dissipativnykh struktur, opisyvaemykh uravneniem Kuramoto—Sivashinskogo”, Model. anal. inform. sist., 22:1 (2015), 105–113 | MR
[20] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1976, 114–129
[21] Kulikov A. N., “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy operatorov v gilbertovom prostranstve”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 186 (2020), 57–66 | DOI
[22] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl
[23] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii v uravneniyakh Kana—Khillarda, Kuramoto—Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. mat. mat. fiz., 59:4 (2019), 670–683 | DOI | MR | Zbl
[24] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950 | MR
[25] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–370
[26] Guckenheimer J., Holmes P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983 | MR | Zbl
[27] Kelley A., “The stable, center-stable, center, center-unstable, unstable manifolds”, J. Differ. Equations., 3:4 (1967), 546–570 | DOI | MR | Zbl
[28] Kulikov A. N., Kulikov D. A., “Bifurcations in Kuramoto—Sivashinsky equation”, Pliska Stud. Math., 25 (2015), 101–110 | MR
[29] Kulikov A. N., Kulikov D. A., “Bifuration in a boundary-value problem of nanoelectronics”, J. Math. Sci., 208:2 (2015), 211–221 | DOI | MR | Zbl
[30] Kulikov A. N., Kulikov D. A., “The Kuramoto–Sivashinsky equation. A local attractor filled with unstable periodic solutions”, Automat. Control Comput. Sci., 52:7 (2018), 708–713 | DOI | MR
[31] Marsden J. E., McCraken M., The Hopf Bifurcations and Its Applications, Springer, New York, 1976 | MR
[32] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997 | MR | Zbl